*> \brief \b CSYTRI2X * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CSYTRI2X + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO ) * * .. Scalar Arguments .. * CHARACTER UPLO * INTEGER INFO, LDA, N, NB * .. * .. Array Arguments .. * INTEGER IPIV( * ) * COMPLEX A( LDA, * ), WORK( N+NB+1,* ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CSYTRI2X computes the inverse of a real symmetric indefinite matrix *> A using the factorization A = U*D*U**T or A = L*D*L**T computed by *> CSYTRF. *> \endverbatim * * Arguments: * ========== * *> \param[in] UPLO *> \verbatim *> UPLO is CHARACTER*1 *> Specifies whether the details of the factorization are stored *> as an upper or lower triangular matrix. *> = 'U': Upper triangular, form is A = U*D*U**T; *> = 'L': Lower triangular, form is A = L*D*L**T. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix A. N >= 0. *> \endverbatim *> *> \param[in,out] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> On entry, the NNB diagonal matrix D and the multipliers *> used to obtain the factor U or L as computed by CSYTRF. *> *> On exit, if INFO = 0, the (symmetric) inverse of the original *> matrix. If UPLO = 'U', the upper triangular part of the *> inverse is formed and the part of A below the diagonal is not *> referenced; if UPLO = 'L' the lower triangular part of the *> inverse is formed and the part of A above the diagonal is *> not referenced. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,N). *> \endverbatim *> *> \param[in] IPIV *> \verbatim *> IPIV is INTEGER array, dimension (N) *> Details of the interchanges and the NNB structure of D *> as determined by CSYTRF. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (N+NB+1,NB+3) *> \endverbatim *> *> \param[in] NB *> \verbatim *> NB is INTEGER *> Block size *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its *> inverse could not be computed. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complexSYcomputational * * ===================================================================== SUBROUTINE CSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDA, N, NB * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX A( LDA, * ), WORK( N+NB+1,* ) * .. * * ===================================================================== * * .. Parameters .. COMPLEX ONE, ZERO PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), $ ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER I, IINFO, IP, K, CUT, NNB INTEGER COUNT INTEGER J, U11, INVD COMPLEX AK, AKKP1, AKP1, D, T COMPLEX U01_I_J, U01_IP1_J COMPLEX U11_I_J, U11_IP1_J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CSYCONV, XERBLA, CTRTRI EXTERNAL CGEMM, CTRMM, CSYSWAPR * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 END IF * * Quick return if possible * * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSYTRI2X', -INFO ) RETURN END IF IF( N.EQ.0 ) $ RETURN * * Convert A * Workspace got Non-diag elements of D * CALL CSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO ) * * Check that the diagonal matrix D is nonsingular. * IF( UPPER ) THEN * * Upper triangular storage: examine D from bottom to top * DO INFO = N, 1, -1 IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO ) $ RETURN END DO ELSE * * Lower triangular storage: examine D from top to bottom. * DO INFO = 1, N IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO ) $ RETURN END DO END IF INFO = 0 * * Splitting Workspace * U01 is a block (N,NB+1) * The first element of U01 is in WORK(1,1) * U11 is a block (NB+1,NB+1) * The first element of U11 is in WORK(N+1,1) U11 = N * INVD is a block (N,2) * The first element of INVD is in WORK(1,INVD) INVD = NB+2 IF( UPPER ) THEN * * invA = P * inv(U**T)*inv(D)*inv(U)*P**T. * CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO ) * * inv(D) and inv(D)*inv(U) * K=1 DO WHILE ( K .LE. N ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal NNB WORK(K,INVD) = ONE / A( K, K ) WORK(K,INVD+1) = 0 K=K+1 ELSE * 2 x 2 diagonal NNB T = WORK(K+1,1) AK = A( K, K ) / T AKP1 = A( K+1, K+1 ) / T AKKP1 = WORK(K+1,1) / T D = T*( AK*AKP1-ONE ) WORK(K,INVD) = AKP1 / D WORK(K+1,INVD+1) = AK / D WORK(K,INVD+1) = -AKKP1 / D WORK(K+1,INVD) = -AKKP1 / D K=K+2 END IF END DO * * inv(U**T) = (inv(U))**T * * inv(U**T)*inv(D)*inv(U) * CUT=N DO WHILE (CUT .GT. 0) NNB=NB IF (CUT .LE. NNB) THEN NNB=CUT ELSE COUNT = 0 * count negative elements, DO I=CUT+1-NNB,CUT IF (IPIV(I) .LT. 0) COUNT=COUNT+1 END DO * need a even number for a clear cut IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1 END IF CUT=CUT-NNB * * U01 Block * DO I=1,CUT DO J=1,NNB WORK(I,J)=A(I,CUT+J) END DO END DO * * U11 Block * DO I=1,NNB WORK(U11+I,I)=ONE DO J=1,I-1 WORK(U11+I,J)=ZERO END DO DO J=I+1,NNB WORK(U11+I,J)=A(CUT+I,CUT+J) END DO END DO * * invD*U01 * I=1 DO WHILE (I .LE. CUT) IF (IPIV(I) > 0) THEN DO J=1,NNB WORK(I,J)=WORK(I,INVD)*WORK(I,J) END DO I=I+1 ELSE DO J=1,NNB U01_I_J = WORK(I,J) U01_IP1_J = WORK(I+1,J) WORK(I,J)=WORK(I,INVD)*U01_I_J+ $ WORK(I,INVD+1)*U01_IP1_J WORK(I+1,J)=WORK(I+1,INVD)*U01_I_J+ $ WORK(I+1,INVD+1)*U01_IP1_J END DO I=I+2 END IF END DO * * invD1*U11 * I=1 DO WHILE (I .LE. NNB) IF (IPIV(CUT+I) > 0) THEN DO J=I,NNB WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) END DO I=I+1 ELSE DO J=I,NNB U11_I_J = WORK(U11+I,J) U11_IP1_J = WORK(U11+I+1,J) WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) + $ WORK(CUT+I,INVD+1)*WORK(U11+I+1,J) WORK(U11+I+1,J)=WORK(CUT+I+1,INVD)*U11_I_J+ $ WORK(CUT+I+1,INVD+1)*U11_IP1_J END DO I=I+2 END IF END DO * * U11**T*invD1*U11->U11 * CALL CTRMM('L','U','T','U',NNB, NNB, $ ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1) * DO I=1,NNB DO J=I,NNB A(CUT+I,CUT+J)=WORK(U11+I,J) END DO END DO * * U01**T*invD*U01->A(CUT+I,CUT+J) * CALL CGEMM('T','N',NNB,NNB,CUT,ONE,A(1,CUT+1),LDA, $ WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1) * * U11 = U11**T*invD1*U11 + U01**T*invD*U01 * DO I=1,NNB DO J=I,NNB A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J) END DO END DO * * U01 = U00**T*invD0*U01 * CALL CTRMM('L',UPLO,'T','U',CUT, NNB, $ ONE,A,LDA,WORK,N+NB+1) * * Update U01 * DO I=1,CUT DO J=1,NNB A(I,CUT+J)=WORK(I,J) END DO END DO * * Next Block * END DO * * Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T * I=1 DO WHILE ( I .LE. N ) IF( IPIV(I) .GT. 0 ) THEN IP=IPIV(I) IF (I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP ) IF (I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I ) ELSE IP=-IPIV(I) I=I+1 IF ( (I-1) .LT. IP) $ CALL CSYSWAPR( UPLO, N, A, LDA, I-1 ,IP ) IF ( (I-1) .GT. IP) $ CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I-1 ) ENDIF I=I+1 END DO ELSE * * LOWER... * * invA = P * inv(U**T)*inv(D)*inv(U)*P**T. * CALL CTRTRI( UPLO, 'U', N, A, LDA, INFO ) * * inv(D) and inv(D)*inv(U) * K=N DO WHILE ( K .GE. 1 ) IF( IPIV( K ).GT.0 ) THEN * 1 x 1 diagonal NNB WORK(K,INVD) = ONE / A( K, K ) WORK(K,INVD+1) = 0 K=K-1 ELSE * 2 x 2 diagonal NNB T = WORK(K-1,1) AK = A( K-1, K-1 ) / T AKP1 = A( K, K ) / T AKKP1 = WORK(K-1,1) / T D = T*( AK*AKP1-ONE ) WORK(K-1,INVD) = AKP1 / D WORK(K,INVD) = AK / D WORK(K,INVD+1) = -AKKP1 / D WORK(K-1,INVD+1) = -AKKP1 / D K=K-2 END IF END DO * * inv(U**T) = (inv(U))**T * * inv(U**T)*inv(D)*inv(U) * CUT=0 DO WHILE (CUT .LT. N) NNB=NB IF (CUT + NNB .GE. N) THEN NNB=N-CUT ELSE COUNT = 0 * count negative elements, DO I=CUT+1,CUT+NNB IF (IPIV(I) .LT. 0) COUNT=COUNT+1 END DO * need a even number for a clear cut IF (MOD(COUNT,2) .EQ. 1) NNB=NNB+1 END IF * L21 Block DO I=1,N-CUT-NNB DO J=1,NNB WORK(I,J)=A(CUT+NNB+I,CUT+J) END DO END DO * L11 Block DO I=1,NNB WORK(U11+I,I)=ONE DO J=I+1,NNB WORK(U11+I,J)=ZERO END DO DO J=1,I-1 WORK(U11+I,J)=A(CUT+I,CUT+J) END DO END DO * * invD*L21 * I=N-CUT-NNB DO WHILE (I .GE. 1) IF (IPIV(CUT+NNB+I) > 0) THEN DO J=1,NNB WORK(I,J)=WORK(CUT+NNB+I,INVD)*WORK(I,J) END DO I=I-1 ELSE DO J=1,NNB U01_I_J = WORK(I,J) U01_IP1_J = WORK(I-1,J) WORK(I,J)=WORK(CUT+NNB+I,INVD)*U01_I_J+ $ WORK(CUT+NNB+I,INVD+1)*U01_IP1_J WORK(I-1,J)=WORK(CUT+NNB+I-1,INVD+1)*U01_I_J+ $ WORK(CUT+NNB+I-1,INVD)*U01_IP1_J END DO I=I-2 END IF END DO * * invD1*L11 * I=NNB DO WHILE (I .GE. 1) IF (IPIV(CUT+I) > 0) THEN DO J=1,NNB WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) END DO I=I-1 ELSE DO J=1,NNB U11_I_J = WORK(U11+I,J) U11_IP1_J = WORK(U11+I-1,J) WORK(U11+I,J)=WORK(CUT+I,INVD)*WORK(U11+I,J) + $ WORK(CUT+I,INVD+1)*U11_IP1_J WORK(U11+I-1,J)=WORK(CUT+I-1,INVD+1)*U11_I_J+ $ WORK(CUT+I-1,INVD)*U11_IP1_J END DO I=I-2 END IF END DO * * L11**T*invD1*L11->L11 * CALL CTRMM('L',UPLO,'T','U',NNB, NNB, $ ONE,A(CUT+1,CUT+1),LDA,WORK(U11+1,1),N+NB+1) * DO I=1,NNB DO J=1,I A(CUT+I,CUT+J)=WORK(U11+I,J) END DO END DO * IF ( (CUT+NNB) .LT. N ) THEN * * L21**T*invD2*L21->A(CUT+I,CUT+J) * CALL CGEMM('T','N',NNB,NNB,N-NNB-CUT,ONE,A(CUT+NNB+1,CUT+1) $ ,LDA,WORK,N+NB+1, ZERO, WORK(U11+1,1), N+NB+1) * * L11 = L11**T*invD1*L11 + U01**T*invD*U01 * DO I=1,NNB DO J=1,I A(CUT+I,CUT+J)=A(CUT+I,CUT+J)+WORK(U11+I,J) END DO END DO * * L01 = L22**T*invD2*L21 * CALL CTRMM('L',UPLO,'T','U', N-NNB-CUT, NNB, $ ONE,A(CUT+NNB+1,CUT+NNB+1),LDA,WORK,N+NB+1) * Update L21 DO I=1,N-CUT-NNB DO J=1,NNB A(CUT+NNB+I,CUT+J)=WORK(I,J) END DO END DO ELSE * * L11 = L11**T*invD1*L11 * DO I=1,NNB DO J=1,I A(CUT+I,CUT+J)=WORK(U11+I,J) END DO END DO END IF * * Next Block * CUT=CUT+NNB END DO * * Apply PERMUTATIONS P and P**T: P * inv(U**T)*inv(D)*inv(U) *P**T * I=N DO WHILE ( I .GE. 1 ) IF( IPIV(I) .GT. 0 ) THEN IP=IPIV(I) IF (I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP ) IF (I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I ) ELSE IP=-IPIV(I) IF ( I .LT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, I ,IP ) IF ( I .GT. IP) CALL CSYSWAPR( UPLO, N, A, LDA, IP ,I ) I=I-1 ENDIF I=I-1 END DO END IF * RETURN * * End of CSYTRI2X * END