*> \brief \b CTRSNA * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download CTRSNA + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, * LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, * INFO ) * * .. Scalar Arguments .. * CHARACTER HOWMNY, JOB * INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N * .. * .. Array Arguments .. * LOGICAL SELECT( * ) * REAL RWORK( * ), S( * ), SEP( * ) * COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), * $ WORK( LDWORK, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CTRSNA estimates reciprocal condition numbers for specified *> eigenvalues and/or right eigenvectors of a complex upper triangular *> matrix T (or of any matrix Q*T*Q**H with Q unitary). *> \endverbatim * * Arguments: * ========== * *> \param[in] JOB *> \verbatim *> JOB is CHARACTER*1 *> Specifies whether condition numbers are required for *> eigenvalues (S) or eigenvectors (SEP): *> = 'E': for eigenvalues only (S); *> = 'V': for eigenvectors only (SEP); *> = 'B': for both eigenvalues and eigenvectors (S and SEP). *> \endverbatim *> *> \param[in] HOWMNY *> \verbatim *> HOWMNY is CHARACTER*1 *> = 'A': compute condition numbers for all eigenpairs; *> = 'S': compute condition numbers for selected eigenpairs *> specified by the array SELECT. *> \endverbatim *> *> \param[in] SELECT *> \verbatim *> SELECT is LOGICAL array, dimension (N) *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which *> condition numbers are required. To select condition numbers *> for the j-th eigenpair, SELECT(j) must be set to .TRUE.. *> If HOWMNY = 'A', SELECT is not referenced. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The order of the matrix T. N >= 0. *> \endverbatim *> *> \param[in] T *> \verbatim *> T is COMPLEX array, dimension (LDT,N) *> The upper triangular matrix T. *> \endverbatim *> *> \param[in] LDT *> \verbatim *> LDT is INTEGER *> The leading dimension of the array T. LDT >= max(1,N). *> \endverbatim *> *> \param[in] VL *> \verbatim *> VL is COMPLEX array, dimension (LDVL,M) *> If JOB = 'E' or 'B', VL must contain left eigenvectors of T *> (or of any Q*T*Q**H with Q unitary), corresponding to the *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors *> must be stored in consecutive columns of VL, as returned by *> CHSEIN or CTREVC. *> If JOB = 'V', VL is not referenced. *> \endverbatim *> *> \param[in] LDVL *> \verbatim *> LDVL is INTEGER *> The leading dimension of the array VL. *> LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. *> \endverbatim *> *> \param[in] VR *> \verbatim *> VR is COMPLEX array, dimension (LDVR,M) *> If JOB = 'E' or 'B', VR must contain right eigenvectors of T *> (or of any Q*T*Q**H with Q unitary), corresponding to the *> eigenpairs specified by HOWMNY and SELECT. The eigenvectors *> must be stored in consecutive columns of VR, as returned by *> CHSEIN or CTREVC. *> If JOB = 'V', VR is not referenced. *> \endverbatim *> *> \param[in] LDVR *> \verbatim *> LDVR is INTEGER *> The leading dimension of the array VR. *> LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension (MM) *> If JOB = 'E' or 'B', the reciprocal condition numbers of the *> selected eigenvalues, stored in consecutive elements of the *> array. Thus S(j), SEP(j), and the j-th columns of VL and VR *> all correspond to the same eigenpair (but not in general the *> j-th eigenpair, unless all eigenpairs are selected). *> If JOB = 'V', S is not referenced. *> \endverbatim *> *> \param[out] SEP *> \verbatim *> SEP is REAL array, dimension (MM) *> If JOB = 'V' or 'B', the estimated reciprocal condition *> numbers of the selected eigenvectors, stored in consecutive *> elements of the array. *> If JOB = 'E', SEP is not referenced. *> \endverbatim *> *> \param[in] MM *> \verbatim *> MM is INTEGER *> The number of elements in the arrays S (if JOB = 'E' or 'B') *> and/or SEP (if JOB = 'V' or 'B'). MM >= M. *> \endverbatim *> *> \param[out] M *> \verbatim *> M is INTEGER *> The number of elements of the arrays S and/or SEP actually *> used to store the estimated condition numbers. *> If HOWMNY = 'A', M is set to N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (LDWORK,N+6) *> If JOB = 'E', WORK is not referenced. *> \endverbatim *> *> \param[in] LDWORK *> \verbatim *> LDWORK is INTEGER *> The leading dimension of the array WORK. *> LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (N) *> If JOB = 'E', RWORK is not referenced. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit *> < 0: if INFO = -i, the i-th argument had an illegal value *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complexOTHERcomputational * *> \par Further Details: * ===================== *> *> \verbatim *> *> The reciprocal of the condition number of an eigenvalue lambda is *> defined as *> *> S(lambda) = |v**H*u| / (norm(u)*norm(v)) *> *> where u and v are the right and left eigenvectors of T corresponding *> to lambda; v**H denotes the conjugate transpose of v, and norm(u) *> denotes the Euclidean norm. These reciprocal condition numbers always *> lie between zero (very badly conditioned) and one (very well *> conditioned). If n = 1, S(lambda) is defined to be 1. *> *> An approximate error bound for a computed eigenvalue W(i) is given by *> *> EPS * norm(T) / S(i) *> *> where EPS is the machine precision. *> *> The reciprocal of the condition number of the right eigenvector u *> corresponding to lambda is defined as follows. Suppose *> *> T = ( lambda c ) *> ( 0 T22 ) *> *> Then the reciprocal condition number is *> *> SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) *> *> where sigma-min denotes the smallest singular value. We approximate *> the smallest singular value by the reciprocal of an estimate of the *> one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is *> defined to be abs(T(1,1)). *> *> An approximate error bound for a computed right eigenvector VR(i) *> is given by *> *> EPS * norm(T) / SEP(i) *> \endverbatim *> * ===================================================================== SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, $ LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER HOWMNY, JOB INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N * .. * .. Array Arguments .. LOGICAL SELECT( * ) REAL RWORK( * ), S( * ), SEP( * ) COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), $ WORK( LDWORK, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0+0 ) * .. * .. Local Scalars .. LOGICAL SOMCON, WANTBH, WANTS, WANTSP CHARACTER NORMIN INTEGER I, IERR, IX, J, K, KASE, KS REAL BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM, $ XNORM COMPLEX CDUM, PROD * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) COMPLEX DUMMY( 1 ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX REAL SCNRM2, SLAMCH COMPLEX CDOTC EXTERNAL LSAME, ICAMAX, SCNRM2, SLAMCH, CDOTC * .. * .. External Subroutines .. EXTERNAL CLACN2, CLACPY, CLATRS, CSRSCL, CTREXC, SLABAD, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) ) * .. * .. Executable Statements .. * * Decode and test the input parameters * WANTBH = LSAME( JOB, 'B' ) WANTS = LSAME( JOB, 'E' ) .OR. WANTBH WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH * SOMCON = LSAME( HOWMNY, 'S' ) * * Set M to the number of eigenpairs for which condition numbers are * to be computed. * IF( SOMCON ) THEN M = 0 DO 10 J = 1, N IF( SELECT( J ) ) $ M = M + 1 10 CONTINUE ELSE M = N END IF * INFO = 0 IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN INFO = -1 ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN INFO = -8 ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN INFO = -10 ELSE IF( MM.LT.M ) THEN INFO = -13 ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CTRSNA', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( N.EQ.1 ) THEN IF( SOMCON ) THEN IF( .NOT.SELECT( 1 ) ) $ RETURN END IF IF( WANTS ) $ S( 1 ) = ONE IF( WANTSP ) $ SEP( 1 ) = ABS( T( 1, 1 ) ) RETURN END IF * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * KS = 1 DO 50 K = 1, N * IF( SOMCON ) THEN IF( .NOT.SELECT( K ) ) $ GO TO 50 END IF * IF( WANTS ) THEN * * Compute the reciprocal condition number of the k-th * eigenvalue. * PROD = CDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 ) RNRM = SCNRM2( N, VR( 1, KS ), 1 ) LNRM = SCNRM2( N, VL( 1, KS ), 1 ) S( KS ) = ABS( PROD ) / ( RNRM*LNRM ) * END IF * IF( WANTSP ) THEN * * Estimate the reciprocal condition number of the k-th * eigenvector. * * Copy the matrix T to the array WORK and swap the k-th * diagonal element to the (1,1) position. * CALL CLACPY( 'Full', N, N, T, LDT, WORK, LDWORK ) CALL CTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR ) * * Form C = T22 - lambda*I in WORK(2:N,2:N). * DO 20 I = 2, N WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 ) 20 CONTINUE * * Estimate a lower bound for the 1-norm of inv(C**H). The 1st * and (N+1)th columns of WORK are used to store work vectors. * SEP( KS ) = ZERO EST = ZERO KASE = 0 NORMIN = 'N' 30 CONTINUE CALL CLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE ) * IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * * Solve C**H*x = scale*b * CALL CLATRS( 'Upper', 'Conjugate transpose', $ 'Nonunit', NORMIN, N-1, WORK( 2, 2 ), $ LDWORK, WORK, SCALE, RWORK, IERR ) ELSE * * Solve C*x = scale*b * CALL CLATRS( 'Upper', 'No transpose', 'Nonunit', $ NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK, $ SCALE, RWORK, IERR ) END IF NORMIN = 'Y' IF( SCALE.NE.ONE ) THEN * * Multiply by 1/SCALE if doing so will not cause * overflow. * IX = ICAMAX( N-1, WORK, 1 ) XNORM = CABS1( WORK( IX, 1 ) ) IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO ) $ GO TO 40 CALL CSRSCL( N, SCALE, WORK, 1 ) END IF GO TO 30 END IF * SEP( KS ) = ONE / MAX( EST, SMLNUM ) END IF * 40 CONTINUE KS = KS + 1 50 CONTINUE RETURN * * End of CTRSNA * END