*> \brief \b CUNMHR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CUNMHR + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CUNMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
* LDC, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CUNMHR overwrites the general complex M-by-N matrix C with
*>
*> SIDE = 'L' SIDE = 'R'
*> TRANS = 'N': Q * C C * Q
*> TRANS = 'C': Q**H * C C * Q**H
*>
*> where Q is a complex unitary matrix of order nq, with nq = m if
*> SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
*> IHI-ILO elementary reflectors, as returned by CGEHRD:
*>
*> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**H from the Left;
*> = 'R': apply Q or Q**H from the Right.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply Q (No transpose)
*> = 'C': apply Q**H (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*>
*> ILO and IHI must have the same values as in the previous call
*> of CGEHRD. Q is equal to the unit matrix except in the
*> submatrix Q(ilo+1:ihi,ilo+1:ihi).
*> If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
*> ILO = 1 and IHI = 0, if M = 0;
*> if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
*> ILO = 1 and IHI = 0, if N = 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension
*> (LDA,M) if SIDE = 'L'
*> (LDA,N) if SIDE = 'R'
*> The vectors which define the elementary reflectors, as
*> returned by CGEHRD.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension
*> (M-1) if SIDE = 'L'
*> (N-1) if SIDE = 'R'
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by CGEHRD.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC,N)
*> On entry, the M-by-N matrix C.
*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If SIDE = 'L', LWORK >= max(1,N);
*> if SIDE = 'R', LWORK >= max(1,M).
*> For optimum performance LWORK >= N*NB if SIDE = 'L', and
*> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
*> blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CUNMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C,
$ LDC, WORK, LWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER IHI, ILO, INFO, LDA, LDC, LWORK, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFT, LQUERY
INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NH, NI, NQ, NW
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
EXTERNAL ILAENV, LSAME
* ..
* .. External Subroutines ..
EXTERNAL CUNMQR, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
NH = IHI - ILO
LEFT = LSAME( SIDE, 'L' )
LQUERY = ( LWORK.EQ.-1 )
*
* NQ is the order of Q and NW is the minimum dimension of WORK
*
IF( LEFT ) THEN
NQ = M
NW = N
ELSE
NQ = N
NW = M
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
$ THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, NQ ) ) THEN
INFO = -5
ELSE IF( IHI.LT.MIN( ILO, NQ ) .OR. IHI.GT.NQ ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
INFO = -13
END IF
*
IF( INFO.EQ.0 ) THEN
IF( LEFT ) THEN
NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, NH, N, NH, -1 )
ELSE
NB = ILAENV( 1, 'CUNMQR', SIDE // TRANS, M, NH, NH, -1 )
END IF
LWKOPT = MAX( 1, NW )*NB
WORK( 1 ) = LWKOPT
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CUNMHR', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. NH.EQ.0 ) THEN
WORK( 1 ) = 1
RETURN
END IF
*
IF( LEFT ) THEN
MI = NH
NI = N
I1 = ILO + 1
I2 = 1
ELSE
MI = M
NI = NH
I1 = 1
I2 = ILO + 1
END IF
*
CALL CUNMQR( SIDE, TRANS, MI, NI, NH, A( ILO+1, ILO ), LDA,
$ TAU( ILO ), C( I1, I2 ), LDC, WORK, LWORK, IINFO )
*
WORK( 1 ) = LWKOPT
RETURN
*
* End of CUNMHR
*
END