*> \brief \b CUNMR3 multiplies a general matrix by the unitary matrix from a RZ factorization determined by ctzrzf (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CUNMR3 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
* WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER SIDE, TRANS
* INTEGER INFO, K, L, LDA, LDC, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CUNMR3 overwrites the general complex m by n matrix C with
*>
*> Q * C if SIDE = 'L' and TRANS = 'N', or
*>
*> Q**H* C if SIDE = 'L' and TRANS = 'C', or
*>
*> C * Q if SIDE = 'R' and TRANS = 'N', or
*>
*> C * Q**H if SIDE = 'R' and TRANS = 'C',
*>
*> where Q is a complex unitary matrix defined as the product of k
*> elementary reflectors
*>
*> Q = H(1) H(2) . . . H(k)
*>
*> as returned by CTZRZF. Q is of order m if SIDE = 'L' and of order n
*> if SIDE = 'R'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> = 'L': apply Q or Q**H from the Left
*> = 'R': apply Q or Q**H from the Right
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': apply Q (No transpose)
*> = 'C': apply Q**H (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix C. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines
*> the matrix Q.
*> If SIDE = 'L', M >= K >= 0;
*> if SIDE = 'R', N >= K >= 0.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*> L is INTEGER
*> The number of columns of the matrix A containing
*> the meaningful part of the Householder reflectors.
*> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension
*> (LDA,M) if SIDE = 'L',
*> (LDA,N) if SIDE = 'R'
*> The i-th row must contain the vector which defines the
*> elementary reflector H(i), for i = 1,2,...,k, as returned by
*> CTZRZF in the last k rows of its array argument A.
*> A is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (K)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i), as returned by CTZRZF.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC,N)
*> On entry, the m-by-n matrix C.
*> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension
*> (N) if SIDE = 'L',
*> (M) if SIDE = 'R'
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,
$ WORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER SIDE, TRANS
INTEGER INFO, K, L, LDA, LDC, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LEFT, NOTRAN
INTEGER I, I1, I2, I3, IC, JA, JC, MI, NI, NQ
COMPLEX TAUI
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CLARZ, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LEFT = LSAME( SIDE, 'L' )
NOTRAN = LSAME( TRANS, 'N' )
*
* NQ is the order of Q
*
IF( LEFT ) THEN
NQ = M
ELSE
NQ = N
END IF
IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
INFO = -5
ELSE IF( L.LT.0 .OR. ( LEFT .AND. ( L.GT.M ) ) .OR.
$ ( .NOT.LEFT .AND. ( L.GT.N ) ) ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
INFO = -8
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CUNMR3', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
$ RETURN
*
IF( ( LEFT .AND. .NOT.NOTRAN .OR. .NOT.LEFT .AND. NOTRAN ) ) THEN
I1 = 1
I2 = K
I3 = 1
ELSE
I1 = K
I2 = 1
I3 = -1
END IF
*
IF( LEFT ) THEN
NI = N
JA = M - L + 1
JC = 1
ELSE
MI = M
JA = N - L + 1
IC = 1
END IF
*
DO 10 I = I1, I2, I3
IF( LEFT ) THEN
*
* H(i) or H(i)**H is applied to C(i:m,1:n)
*
MI = M - I + 1
IC = I
ELSE
*
* H(i) or H(i)**H is applied to C(1:m,i:n)
*
NI = N - I + 1
JC = I
END IF
*
* Apply H(i) or H(i)**H
*
IF( NOTRAN ) THEN
TAUI = TAU( I )
ELSE
TAUI = CONJG( TAU( I ) )
END IF
CALL CLARZ( SIDE, MI, NI, L, A( I, JA ), LDA, TAUI,
$ C( IC, JC ), LDC, WORK )
*
10 CONTINUE
*
RETURN
*
* End of CUNMR3
*
END