*> \brief \b DGEQLF
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DGEQLF + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGEQLF computes a QL factorization of a real M-by-N matrix A:
*> A = Q * L.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the M-by-N matrix A.
*> On exit,
*> if m >= n, the lower triangle of the subarray
*> A(m-n+1:m,1:n) contains the N-by-N lower triangular matrix L;
*> if m <= n, the elements on and below the (n-m)-th
*> superdiagonal contain the M-by-N lower trapezoidal matrix L;
*> the remaining elements, with the array TAU, represent the
*> orthogonal matrix Q as a product of elementary reflectors
*> (see Further Details).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors (see Further
*> Details).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*> For optimum performance LWORK >= N*NB, where NB is the
*> optimal blocksize.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleGEcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix Q is represented as a product of elementary reflectors
*>
*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
*>
*> Each H(i) has the form
*>
*> H(i) = I - tau * v * v**T
*>
*> where tau is a real scalar, and v is a real vector with
*> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
*> A(1:m-k+i-1,n-k+i), and tau in TAU(i).
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER I, IB, IINFO, IWS, K, KI, KK, LDWORK, LWKOPT,
$ MU, NB, NBMIN, NU, NX
* ..
* .. External Subroutines ..
EXTERNAL DGEQL2, DLARFB, DLARFT, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
*
IF( INFO.EQ.0 ) THEN
K = MIN( M, N )
IF( K.EQ.0 ) THEN
LWKOPT = 1
ELSE
NB = ILAENV( 1, 'DGEQLF', ' ', M, N, -1, -1 )
LWKOPT = N*NB
END IF
WORK( 1 ) = LWKOPT
*
IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
INFO = -7
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DGEQLF', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( K.EQ.0 ) THEN
RETURN
END IF
*
NBMIN = 2
NX = 1
IWS = N
IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
* Determine when to cross over from blocked to unblocked code.
*
NX = MAX( 0, ILAENV( 3, 'DGEQLF', ' ', M, N, -1, -1 ) )
IF( NX.LT.K ) THEN
*
* Determine if workspace is large enough for blocked code.
*
LDWORK = N
IWS = LDWORK*NB
IF( LWORK.LT.IWS ) THEN
*
* Not enough workspace to use optimal NB: reduce NB and
* determine the minimum value of NB.
*
NB = LWORK / LDWORK
NBMIN = MAX( 2, ILAENV( 2, 'DGEQLF', ' ', M, N, -1,
$ -1 ) )
END IF
END IF
END IF
*
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
*
* Use blocked code initially.
* The last kk columns are handled by the block method.
*
KI = ( ( K-NX-1 ) / NB )*NB
KK = MIN( K, KI+NB )
*
DO 10 I = K - KK + KI + 1, K - KK + 1, -NB
IB = MIN( K-I+1, NB )
*
* Compute the QL factorization of the current block
* A(1:m-k+i+ib-1,n-k+i:n-k+i+ib-1)
*
CALL DGEQL2( M-K+I+IB-1, IB, A( 1, N-K+I ), LDA, TAU( I ),
$ WORK, IINFO )
IF( N-K+I.GT.1 ) THEN
*
* Form the triangular factor of the block reflector
* H = H(i+ib-1) . . . H(i+1) H(i)
*
CALL DLARFT( 'Backward', 'Columnwise', M-K+I+IB-1, IB,
$ A( 1, N-K+I ), LDA, TAU( I ), WORK, LDWORK )
*
* Apply H**T to A(1:m-k+i+ib-1,1:n-k+i-1) from the left
*
CALL DLARFB( 'Left', 'Transpose', 'Backward',
$ 'Columnwise', M-K+I+IB-1, N-K+I-1, IB,
$ A( 1, N-K+I ), LDA, WORK, LDWORK, A, LDA,
$ WORK( IB+1 ), LDWORK )
END IF
10 CONTINUE
MU = M - K + I + NB - 1
NU = N - K + I + NB - 1
ELSE
MU = M
NU = N
END IF
*
* Use unblocked code to factor the last or only block
*
IF( MU.GT.0 .AND. NU.GT.0 )
$ CALL DGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO )
*
WORK( 1 ) = IWS
RETURN
*
* End of DGEQLF
*
END