*> \brief \b DLA_LIN_BERR computes a component-wise relative backward error. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLA_LIN_BERR + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR ) * * .. Scalar Arguments .. * INTEGER N, NZ, NRHS * .. * .. Array Arguments .. * DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS ) * DOUBLE PRECISION RES( N, NRHS ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLA_LIN_BERR computes component-wise relative backward error from *> the formula *> max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) ) *> where abs(Z) is the component-wise absolute value of the matrix *> or vector Z. *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The number of linear equations, i.e., the order of the *> matrix A. N >= 0. *> \endverbatim *> *> \param[in] NZ *> \verbatim *> NZ is INTEGER *> We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to *> guard against spuriously zero residuals. Default value is N. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of right hand sides, i.e., the number of columns *> of the matrices AYB, RES, and BERR. NRHS >= 0. *> \endverbatim *> *> \param[in] RES *> \verbatim *> RES is DOUBLE PRECISION array, dimension (N,NRHS) *> The residual matrix, i.e., the matrix R in the relative backward *> error formula above. *> \endverbatim *> *> \param[in] AYB *> \verbatim *> AYB is DOUBLE PRECISION array, dimension (N, NRHS) *> The denominator in the relative backward error formula above, i.e., *> the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B *> are from iterative refinement (see dla_gerfsx_extended.f). *> \endverbatim *> *> \param[out] BERR *> \verbatim *> BERR is DOUBLE PRECISION array, dimension (NRHS) *> The component-wise relative backward error from the formula above. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup doubleOTHERcomputational * * ===================================================================== SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER N, NZ, NRHS * .. * .. Array Arguments .. DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS ) DOUBLE PRECISION RES( N, NRHS ) * .. * * ===================================================================== * * .. Local Scalars .. DOUBLE PRECISION TMP INTEGER I, J * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. External Functions .. EXTERNAL DLAMCH DOUBLE PRECISION DLAMCH DOUBLE PRECISION SAFE1 * .. * .. Executable Statements .. * * Adding SAFE1 to the numerator guards against spuriously zero * residuals. A similar safeguard is in the SLA_yyAMV routine used * to compute AYB. * SAFE1 = DLAMCH( 'Safe minimum' ) SAFE1 = (NZ+1)*SAFE1 DO J = 1, NRHS BERR(J) = 0.0D+0 DO I = 1, N IF (AYB(I,J) .NE. 0.0D+0) THEN TMP = (SAFE1+ABS(RES(I,J)))/AYB(I,J) BERR(J) = MAX( BERR(J), TMP ) END IF * * If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know * the true residual also must be exactly 0.0. * END DO END DO END