*> \brief \b DLA_LIN_BERR computes a component-wise relative backward error.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLA_LIN_BERR + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
*
* .. Scalar Arguments ..
* INTEGER N, NZ, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
* DOUBLE PRECISION RES( N, NRHS )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLA_LIN_BERR computes component-wise relative backward error from
*> the formula
*> max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
*> where abs(Z) is the component-wise absolute value of the matrix
*> or vector Z.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of linear equations, i.e., the order of the
*> matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NZ
*> \verbatim
*> NZ is INTEGER
*> We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
*> guard against spuriously zero residuals. Default value is N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices AYB, RES, and BERR. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] RES
*> \verbatim
*> RES is DOUBLE PRECISION array, dimension (N,NRHS)
*> The residual matrix, i.e., the matrix R in the relative backward
*> error formula above.
*> \endverbatim
*>
*> \param[in] AYB
*> \verbatim
*> AYB is DOUBLE PRECISION array, dimension (N, NRHS)
*> The denominator in the relative backward error formula above, i.e.,
*> the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
*> are from iterative refinement (see dla_gerfsx_extended.f).
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
*> The component-wise relative backward error from the formula above.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERcomputational
*
* =====================================================================
SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER N, NZ, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION AYB( N, NRHS ), BERR( NRHS )
DOUBLE PRECISION RES( N, NRHS )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
DOUBLE PRECISION TMP
INTEGER I, J
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Functions ..
EXTERNAL DLAMCH
DOUBLE PRECISION DLAMCH
DOUBLE PRECISION SAFE1
* ..
* .. Executable Statements ..
*
* Adding SAFE1 to the numerator guards against spuriously zero
* residuals. A similar safeguard is in the SLA_yyAMV routine used
* to compute AYB.
*
SAFE1 = DLAMCH( 'Safe minimum' )
SAFE1 = (NZ+1)*SAFE1
DO J = 1, NRHS
BERR(J) = 0.0D+0
DO I = 1, N
IF (AYB(I,J) .NE. 0.0D+0) THEN
TMP = (SAFE1+ABS(RES(I,J)))/AYB(I,J)
BERR(J) = MAX( BERR(J), TMP )
END IF
*
* If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know
* the true residual also must be exactly 0.0.
*
END DO
END DO
END