*> \brief \b DLARFB_GETT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLARFB_GETT + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
* $ WORK, LDWORK )
* IMPLICIT NONE
*
* .. Scalar Arguments ..
* CHARACTER IDENT
* INTEGER K, LDA, LDB, LDT, LDWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ),
* $ WORK( LDWORK, * )
* ..
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLARFB_GETT applies a real Householder block reflector H from the
*> left to a real (K+M)-by-N "triangular-pentagonal" matrix
*> composed of two block matrices: an upper trapezoidal K-by-N matrix A
*> stored in the array A, and a rectangular M-by-(N-K) matrix B, stored
*> in the array B. The block reflector H is stored in a compact
*> WY-representation, where the elementary reflectors are in the
*> arrays A, B and T. See Further Details section.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IDENT
*> \verbatim
*> IDENT is CHARACTER*1
*> If IDENT = not 'I', or not 'i', then V1 is unit
*> lower-triangular and stored in the left K-by-K block of
*> the input matrix A,
*> If IDENT = 'I' or 'i', then V1 is an identity matrix and
*> not stored.
*> See Further Details section.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix B.
*> M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and B.
*> N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number or rows of the matrix A.
*> K is also order of the matrix T, i.e. the number of
*> elementary reflectors whose product defines the block
*> reflector. 0 <= K <= N.
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDT,K)
*> The upper-triangular K-by-K matrix T in the representation
*> of the block reflector.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= K.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*>
*> On entry:
*> a) In the K-by-N upper-trapezoidal part A: input matrix A.
*> b) In the columns below the diagonal: columns of V1
*> (ones are not stored on the diagonal).
*>
*> On exit:
*> A is overwritten by rectangular K-by-N product H*A.
*>
*> See Further Details section.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array A. LDA >= max(1,K).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,N)
*>
*> On entry:
*> a) In the M-by-(N-K) right block: input matrix B.
*> b) In the M-by-N left block: columns of V2.
*>
*> On exit:
*> B is overwritten by rectangular M-by-N product H*B.
*>
*> See Further Details section.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array,
*> dimension (LDWORK,max(K,N-K))
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK. LDWORK>=max(1,K).
*>
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> \verbatim
*>
*> November 2020, Igor Kozachenko,
*> Computer Science Division,
*> University of California, Berkeley
*>
*> \endverbatim
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> (1) Description of the Algebraic Operation.
*>
*> The matrix A is a K-by-N matrix composed of two column block
*> matrices, A1, which is K-by-K, and A2, which is K-by-(N-K):
*> A = ( A1, A2 ).
*> The matrix B is an M-by-N matrix composed of two column block
*> matrices, B1, which is M-by-K, and B2, which is M-by-(N-K):
*> B = ( B1, B2 ).
*>
*> Perform the operation:
*>
*> ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) =
*> ( B_out ) ( B_in ) ( B_in )
*> = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in )
*> ( V2 ) ( B_in )
*> On input:
*>
*> a) ( A_in ) consists of two block columns:
*> ( B_in )
*>
*> ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in ))
*> ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )),
*>
*> where the column blocks are:
*>
*> ( A1_in ) is a K-by-K upper-triangular matrix stored in the
*> upper triangular part of the array A(1:K,1:K).
*> ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored.
*>
*> ( A2_in ) is a K-by-(N-K) rectangular matrix stored
*> in the array A(1:K,K+1:N).
*> ( B2_in ) is an M-by-(N-K) rectangular matrix stored
*> in the array B(1:M,K+1:N).
*>
*> b) V = ( V1 )
*> ( V2 )
*>
*> where:
*> 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored;
*> 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix,
*> stored in the lower-triangular part of the array
*> A(1:K,1:K) (ones are not stored),
*> and V2 is an M-by-K rectangular stored the array B(1:M,1:K),
*> (because on input B1_in is a rectangular zero
*> matrix that is not stored and the space is
*> used to store V2).
*>
*> c) T is a K-by-K upper-triangular matrix stored
*> in the array T(1:K,1:K).
*>
*> On output:
*>
*> a) ( A_out ) consists of two block columns:
*> ( B_out )
*>
*> ( A_out ) = (( A1_out ) ( A2_out ))
*> ( B_out ) (( B1_out ) ( B2_out )),
*>
*> where the column blocks are:
*>
*> ( A1_out ) is a K-by-K square matrix, or a K-by-K
*> upper-triangular matrix, if V1 is an
*> identity matrix. AiOut is stored in
*> the array A(1:K,1:K).
*> ( B1_out ) is an M-by-K rectangular matrix stored
*> in the array B(1:M,K:N).
*>
*> ( A2_out ) is a K-by-(N-K) rectangular matrix stored
*> in the array A(1:K,K+1:N).
*> ( B2_out ) is an M-by-(N-K) rectangular matrix stored
*> in the array B(1:M,K+1:N).
*>
*>
*> The operation above can be represented as the same operation
*> on each block column:
*>
*> ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in )
*> ( B1_out ) ( 0 ) ( 0 )
*>
*> ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in )
*> ( B2_out ) ( B2_in ) ( B2_in )
*>
*> If IDENT != 'I':
*>
*> The computation for column block 1:
*>
*> A1_out: = A1_in - V1*T*(V1**T)*A1_in
*>
*> B1_out: = - V2*T*(V1**T)*A1_in
*>
*> The computation for column block 2, which exists if N > K:
*>
*> A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in )
*>
*> B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in )
*>
*> If IDENT == 'I':
*>
*> The operation for column block 1:
*>
*> A1_out: = A1_in - V1*T**A1_in
*>
*> B1_out: = - V2*T**A1_in
*>
*> The computation for column block 2, which exists if N > K:
*>
*> A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in )
*>
*> B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in )
*>
*> (2) Description of the Algorithmic Computation.
*>
*> In the first step, we compute column block 2, i.e. A2 and B2.
*> Here, we need to use the K-by-(N-K) rectangular workspace
*> matrix W2 that is of the same size as the matrix A2.
*> W2 is stored in the array WORK(1:K,1:(N-K)).
*>
*> In the second step, we compute column block 1, i.e. A1 and B1.
*> Here, we need to use the K-by-K square workspace matrix W1
*> that is of the same size as the as the matrix A1.
*> W1 is stored in the array WORK(1:K,1:K).
*>
*> NOTE: Hence, in this routine, we need the workspace array WORK
*> only of size WORK(1:K,1:max(K,N-K)) so it can hold both W2 from
*> the first step and W1 from the second step.
*>
*> Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I',
*> more computations than in the Case (B).
*>
*> if( IDENT != 'I' ) then
*> if ( N > K ) then
*> (First Step - column block 2)
*> col2_(1) W2: = A2
*> col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2
*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
*> col2_(4) W2: = T * W2
*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
*> col2_(7) A2: = A2 - W2
*> else
*> (Second Step - column block 1)
*> col1_(1) W1: = A1
*> col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1
*> col1_(3) W1: = T * W1
*> col1_(4) B1: = - V2 * W1 = - B1 * W1
*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
*> col1_(6) square A1: = A1 - W1
*> end if
*> end if
*>
*> Case (B), when V1 is an identity matrix, i.e. IDENT == 'I',
*> less computations than in the Case (A)
*>
*> if( IDENT == 'I' ) then
*> if ( N > K ) then
*> (First Step - column block 2)
*> col2_(1) W2: = A2
*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
*> col2_(4) W2: = T * W2
*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
*> col2_(7) A2: = A2 - W2
*> else
*> (Second Step - column block 1)
*> col1_(1) W1: = A1
*> col1_(3) W1: = T * W1
*> col1_(4) B1: = - V2 * W1 = - B1 * W1
*> col1_(6) upper-triangular_of_(A1): = A1 - W1
*> end if
*> end if
*>
*> Combine these cases (A) and (B) together, this is the resulting
*> algorithm:
*>
*> if ( N > K ) then
*>
*> (First Step - column block 2)
*>
*> col2_(1) W2: = A2
*> if( IDENT != 'I' ) then
*> col2_(2) W2: = (V1**T) * W2
*> = (unit_lower_tr_of_(A1)**T) * W2
*> end if
*> col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2]
*> col2_(4) W2: = T * W2
*> col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2
*> if( IDENT != 'I' ) then
*> col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2
*> end if
*> col2_(7) A2: = A2 - W2
*>
*> else
*>
*> (Second Step - column block 1)
*>
*> col1_(1) W1: = A1
*> if( IDENT != 'I' ) then
*> col1_(2) W1: = (V1**T) * W1
*> = (unit_lower_tr_of_(A1)**T) * W1
*> end if
*> col1_(3) W1: = T * W1
*> col1_(4) B1: = - V2 * W1 = - B1 * W1
*> if( IDENT != 'I' ) then
*> col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1
*> col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1)
*> end if
*> col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1)
*>
*> end if
*>
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB,
$ WORK, LDWORK )
IMPLICIT NONE
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER IDENT
INTEGER K, LDA, LDB, LDT, LDWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ),
$ WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LNOTIDENT
INTEGER I, J
* ..
* .. EXTERNAL FUNCTIONS ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DGEMM, DTRMM
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LT.0 .OR. N.LE.0 .OR. K.EQ.0 .OR. K.GT.N )
$ RETURN
*
LNOTIDENT = .NOT.LSAME( IDENT, 'I' )
*
* ------------------------------------------------------------------
*
* First Step. Computation of the Column Block 2:
*
* ( A2 ) := H * ( A2 )
* ( B2 ) ( B2 )
*
* ------------------------------------------------------------------
*
IF( N.GT.K ) THEN
*
* col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N)
* into W2=WORK(1:K, 1:N-K) column-by-column.
*
DO J = 1, N-K
CALL DCOPY( K, A( 1, K+J ), 1, WORK( 1, J ), 1 )
END DO
IF( LNOTIDENT ) THEN
*
* col2_(2) Compute W2: = (V1**T) * W2 = (A1**T) * W2,
* V1 is not an identy matrix, but unit lower-triangular
* V1 stored in A1 (diagonal ones are not stored).
*
*
CALL DTRMM( 'L', 'L', 'T', 'U', K, N-K, ONE, A, LDA,
$ WORK, LDWORK )
END IF
*
* col2_(3) Compute W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2
* V2 stored in B1.
*
IF( M.GT.0 ) THEN
CALL DGEMM( 'T', 'N', K, N-K, M, ONE, B, LDB,
$ B( 1, K+1 ), LDB, ONE, WORK, LDWORK )
END IF
*
* col2_(4) Compute W2: = T * W2,
* T is upper-triangular.
*
CALL DTRMM( 'L', 'U', 'N', 'N', K, N-K, ONE, T, LDT,
$ WORK, LDWORK )
*
* col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2,
* V2 stored in B1.
*
IF( M.GT.0 ) THEN
CALL DGEMM( 'N', 'N', M, N-K, K, -ONE, B, LDB,
$ WORK, LDWORK, ONE, B( 1, K+1 ), LDB )
END IF
*
IF( LNOTIDENT ) THEN
*
* col2_(6) Compute W2: = V1 * W2 = A1 * W2,
* V1 is not an identity matrix, but unit lower-triangular,
* V1 stored in A1 (diagonal ones are not stored).
*
CALL DTRMM( 'L', 'L', 'N', 'U', K, N-K, ONE, A, LDA,
$ WORK, LDWORK )
END IF
*
* col2_(7) Compute A2: = A2 - W2 =
* = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K),
* column-by-column.
*
DO J = 1, N-K
DO I = 1, K
A( I, K+J ) = A( I, K+J ) - WORK( I, J )
END DO
END DO
*
END IF
*
* ------------------------------------------------------------------
*
* Second Step. Computation of the Column Block 1:
*
* ( A1 ) := H * ( A1 )
* ( B1 ) ( 0 )
*
* ------------------------------------------------------------------
*
* col1_(1) Compute W1: = A1. Copy the upper-triangular
* A1 = A(1:K, 1:K) into the upper-triangular
* W1 = WORK(1:K, 1:K) column-by-column.
*
DO J = 1, K
CALL DCOPY( J, A( 1, J ), 1, WORK( 1, J ), 1 )
END DO
*
* Set the subdiagonal elements of W1 to zero column-by-column.
*
DO J = 1, K - 1
DO I = J + 1, K
WORK( I, J ) = ZERO
END DO
END DO
*
IF( LNOTIDENT ) THEN
*
* col1_(2) Compute W1: = (V1**T) * W1 = (A1**T) * W1,
* V1 is not an identity matrix, but unit lower-triangular
* V1 stored in A1 (diagonal ones are not stored),
* W1 is upper-triangular with zeroes below the diagonal.
*
CALL DTRMM( 'L', 'L', 'T', 'U', K, K, ONE, A, LDA,
$ WORK, LDWORK )
END IF
*
* col1_(3) Compute W1: = T * W1,
* T is upper-triangular,
* W1 is upper-triangular with zeroes below the diagonal.
*
CALL DTRMM( 'L', 'U', 'N', 'N', K, K, ONE, T, LDT,
$ WORK, LDWORK )
*
* col1_(4) Compute B1: = - V2 * W1 = - B1 * W1,
* V2 = B1, W1 is upper-triangular with zeroes below the diagonal.
*
IF( M.GT.0 ) THEN
CALL DTRMM( 'R', 'U', 'N', 'N', M, K, -ONE, WORK, LDWORK,
$ B, LDB )
END IF
*
IF( LNOTIDENT ) THEN
*
* col1_(5) Compute W1: = V1 * W1 = A1 * W1,
* V1 is not an identity matrix, but unit lower-triangular
* V1 stored in A1 (diagonal ones are not stored),
* W1 is upper-triangular on input with zeroes below the diagonal,
* and square on output.
*
CALL DTRMM( 'L', 'L', 'N', 'U', K, K, ONE, A, LDA,
$ WORK, LDWORK )
*
* col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K)
* column-by-column. A1 is upper-triangular on input.
* If IDENT, A1 is square on output, and W1 is square,
* if NOT IDENT, A1 is upper-triangular on output,
* W1 is upper-triangular.
*
* col1_(6)_a Compute elements of A1 below the diagonal.
*
DO J = 1, K - 1
DO I = J + 1, K
A( I, J ) = - WORK( I, J )
END DO
END DO
*
END IF
*
* col1_(6)_b Compute elements of A1 on and above the diagonal.
*
DO J = 1, K
DO I = 1, J
A( I, J ) = A( I, J ) - WORK( I, J )
END DO
END DO
*
RETURN
*
* End of DLARFB_GETT
*
END