*> \brief \b DPTTRS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DPTTRS + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DPTTRS( N, NRHS, D, E, B, LDB, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DPTTRS solves a tridiagonal system of the form
*> A * X = B
*> using the L*D*L**T factorization of A computed by DPTTRF. D is a
*> diagonal matrix specified in the vector D, L is a unit bidiagonal
*> matrix whose subdiagonal is specified in the vector E, and X and B
*> are N by NRHS matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the tridiagonal matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The n diagonal elements of the diagonal matrix D from the
*> L*D*L**T factorization of A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The (n-1) subdiagonal elements of the unit bidiagonal factor
*> L from the L*D*L**T factorization of A. E can also be regarded
*> as the superdiagonal of the unit bidiagonal factor U from the
*> factorization A = U**T*D*U.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the right hand side vectors B for the system of
*> linear equations.
*> On exit, the solution vectors, X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doublePTcomputational
*
* =====================================================================
SUBROUTINE DPTTRS( N, NRHS, D, E, B, LDB, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
* ..
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER J, JB, NB
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. External Subroutines ..
EXTERNAL DPTTS2, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( NRHS.LT.0 ) THEN
INFO = -2
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPTTRS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* Determine the number of right-hand sides to solve at a time.
*
IF( NRHS.EQ.1 ) THEN
NB = 1
ELSE
NB = MAX( 1, ILAENV( 1, 'DPTTRS', ' ', N, NRHS, -1, -1 ) )
END IF
*
IF( NB.GE.NRHS ) THEN
CALL DPTTS2( N, NRHS, D, E, B, LDB )
ELSE
DO 10 J = 1, NRHS, NB
JB = MIN( NRHS-J+1, NB )
CALL DPTTS2( N, JB, D, E, B( 1, J ), LDB )
10 CONTINUE
END IF
*
RETURN
*
* End of DPTTRS
*
END