*> \brief \b SLAED3 used by sstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is tridiagonal. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SLAED3 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX, * CTOT, W, S, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, K, LDQ, N, N1 * REAL RHO * .. * .. Array Arguments .. * INTEGER CTOT( * ), INDX( * ) * REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), * $ S( * ), W( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SLAED3 finds the roots of the secular equation, as defined by the *> values in D, W, and RHO, between 1 and K. It makes the *> appropriate calls to SLAED4 and then updates the eigenvectors by *> multiplying the matrix of eigenvectors of the pair of eigensystems *> being combined by the matrix of eigenvectors of the K-by-K system *> which is solved here. *> *> This code makes very mild assumptions about floating point *> arithmetic. It will work on machines with a guard digit in *> add/subtract, or on those binary machines without guard digits *> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. *> It could conceivably fail on hexadecimal or decimal machines *> without guard digits, but we know of none. *> \endverbatim * * Arguments: * ========== * *> \param[in] K *> \verbatim *> K is INTEGER *> The number of terms in the rational function to be solved by *> SLAED4. K >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of rows and columns in the Q matrix. *> N >= K (deflation may result in N>K). *> \endverbatim *> *> \param[in] N1 *> \verbatim *> N1 is INTEGER *> The location of the last eigenvalue in the leading submatrix. *> min(1,N) <= N1 <= N/2. *> \endverbatim *> *> \param[out] D *> \verbatim *> D is REAL array, dimension (N) *> D(I) contains the updated eigenvalues for *> 1 <= I <= K. *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is REAL array, dimension (LDQ,N) *> Initially the first K columns are used as workspace. *> On output the columns 1 to K contain *> the updated eigenvectors. *> \endverbatim *> *> \param[in] LDQ *> \verbatim *> LDQ is INTEGER *> The leading dimension of the array Q. LDQ >= max(1,N). *> \endverbatim *> *> \param[in] RHO *> \verbatim *> RHO is REAL *> The value of the parameter in the rank one update equation. *> RHO >= 0 required. *> \endverbatim *> *> \param[in,out] DLAMDA *> \verbatim *> DLAMDA is REAL array, dimension (K) *> The first K elements of this array contain the old roots *> of the deflated updating problem. These are the poles *> of the secular equation. May be changed on output by *> having lowest order bit set to zero on Cray X-MP, Cray Y-MP, *> Cray-2, or Cray C-90, as described above. *> \endverbatim *> *> \param[in] Q2 *> \verbatim *> Q2 is REAL array, dimension (LDQ2*N) *> The first K columns of this matrix contain the non-deflated *> eigenvectors for the split problem. *> \endverbatim *> *> \param[in] INDX *> \verbatim *> INDX is INTEGER array, dimension (N) *> The permutation used to arrange the columns of the deflated *> Q matrix into three groups (see SLAED2). *> The rows of the eigenvectors found by SLAED4 must be likewise *> permuted before the matrix multiply can take place. *> \endverbatim *> *> \param[in] CTOT *> \verbatim *> CTOT is INTEGER array, dimension (4) *> A count of the total number of the various types of columns *> in Q, as described in INDX. The fourth column type is any *> column which has been deflated. *> \endverbatim *> *> \param[in,out] W *> \verbatim *> W is REAL array, dimension (K) *> The first K elements of this array contain the components *> of the deflation-adjusted updating vector. Destroyed on *> output. *> \endverbatim *> *> \param[out] S *> \verbatim *> S is REAL array, dimension (N1 + 1)*K *> Will contain the eigenvectors of the repaired matrix which *> will be multiplied by the previously accumulated eigenvectors *> to update the system. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> > 0: if INFO = 1, an eigenvalue did not converge *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup auxOTHERcomputational * *> \par Contributors: * ================== *> *> Jeff Rutter, Computer Science Division, University of California *> at Berkeley, USA \n *> Modified by Francoise Tisseur, University of Tennessee *> * ===================================================================== SUBROUTINE SLAED3( K, N, N1, D, Q, LDQ, RHO, DLAMDA, Q2, INDX, $ CTOT, W, S, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, K, LDQ, N, N1 REAL RHO * .. * .. Array Arguments .. INTEGER CTOT( * ), INDX( * ) REAL D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), $ S( * ), W( * ) * .. * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 ) * .. * .. Local Scalars .. INTEGER I, II, IQ2, J, N12, N2, N23 REAL TEMP * .. * .. External Functions .. REAL SLAMC3, SNRM2 EXTERNAL SLAMC3, SNRM2 * .. * .. External Subroutines .. EXTERNAL SCOPY, SGEMM, SLACPY, SLAED4, SLASET, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, SIGN, SQRT * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( K.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.K ) THEN INFO = -2 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAED3', -INFO ) RETURN END IF * * Quick return if possible * IF( K.EQ.0 ) $ RETURN * * Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can * be computed with high relative accuracy (barring over/underflow). * This is a problem on machines without a guard digit in * add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). * The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), * which on any of these machines zeros out the bottommost * bit of DLAMDA(I) if it is 1; this makes the subsequent * subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation * occurs. On binary machines with a guard digit (almost all * machines) it does not change DLAMDA(I) at all. On hexadecimal * and decimal machines with a guard digit, it slightly * changes the bottommost bits of DLAMDA(I). It does not account * for hexadecimal or decimal machines without guard digits * (we know of none). We use a subroutine call to compute * 2*DLAMBDA(I) to prevent optimizing compilers from eliminating * this code. * DO 10 I = 1, K DLAMDA( I ) = SLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I ) 10 CONTINUE * DO 20 J = 1, K CALL SLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO ) * * If the zero finder fails, the computation is terminated. * IF( INFO.NE.0 ) $ GO TO 120 20 CONTINUE * IF( K.EQ.1 ) $ GO TO 110 IF( K.EQ.2 ) THEN DO 30 J = 1, K W( 1 ) = Q( 1, J ) W( 2 ) = Q( 2, J ) II = INDX( 1 ) Q( 1, J ) = W( II ) II = INDX( 2 ) Q( 2, J ) = W( II ) 30 CONTINUE GO TO 110 END IF * * Compute updated W. * CALL SCOPY( K, W, 1, S, 1 ) * * Initialize W(I) = Q(I,I) * CALL SCOPY( K, Q, LDQ+1, W, 1 ) DO 60 J = 1, K DO 40 I = 1, J - 1 W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 40 CONTINUE DO 50 I = J + 1, K W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) ) 50 CONTINUE 60 CONTINUE DO 70 I = 1, K W( I ) = SIGN( SQRT( -W( I ) ), S( I ) ) 70 CONTINUE * * Compute eigenvectors of the modified rank-1 modification. * DO 100 J = 1, K DO 80 I = 1, K S( I ) = W( I ) / Q( I, J ) 80 CONTINUE TEMP = SNRM2( K, S, 1 ) DO 90 I = 1, K II = INDX( I ) Q( I, J ) = S( II ) / TEMP 90 CONTINUE 100 CONTINUE * * Compute the updated eigenvectors. * 110 CONTINUE * N2 = N - N1 N12 = CTOT( 1 ) + CTOT( 2 ) N23 = CTOT( 2 ) + CTOT( 3 ) * CALL SLACPY( 'A', N23, K, Q( CTOT( 1 )+1, 1 ), LDQ, S, N23 ) IQ2 = N1*N12 + 1 IF( N23.NE.0 ) THEN CALL SGEMM( 'N', 'N', N2, K, N23, ONE, Q2( IQ2 ), N2, S, N23, $ ZERO, Q( N1+1, 1 ), LDQ ) ELSE CALL SLASET( 'A', N2, K, ZERO, ZERO, Q( N1+1, 1 ), LDQ ) END IF * CALL SLACPY( 'A', N12, K, Q, LDQ, S, N12 ) IF( N12.NE.0 ) THEN CALL SGEMM( 'N', 'N', N1, K, N12, ONE, Q2, N1, S, N12, ZERO, Q, $ LDQ ) ELSE CALL SLASET( 'A', N1, K, ZERO, ZERO, Q( 1, 1 ), LDQ ) END IF * * 120 CONTINUE RETURN * * End of SLAED3 * END