*> \brief \b SLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAEV2 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* .. Scalar Arguments ..
* REAL A, B, C, CS1, RT1, RT2, SN1
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
*> [ A B ]
*> [ B C ].
*> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
*> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
*> eigenvector for RT1, giving the decomposition
*>
*> [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
*> [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] A
*> \verbatim
*> A is REAL
*> The (1,1) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL
*> The (1,2) element and the conjugate of the (2,1) element of
*> the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is REAL
*> The (2,2) element of the 2-by-2 matrix.
*> \endverbatim
*>
*> \param[out] RT1
*> \verbatim
*> RT1 is REAL
*> The eigenvalue of larger absolute value.
*> \endverbatim
*>
*> \param[out] RT2
*> \verbatim
*> RT2 is REAL
*> The eigenvalue of smaller absolute value.
*> \endverbatim
*>
*> \param[out] CS1
*> \verbatim
*> CS1 is REAL
*> \endverbatim
*>
*> \param[out] SN1
*> \verbatim
*> SN1 is REAL
*> The vector (CS1, SN1) is a unit right eigenvector for RT1.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup OTHERauxiliary
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> RT1 is accurate to a few ulps barring over/underflow.
*>
*> RT2 may be inaccurate if there is massive cancellation in the
*> determinant A*C-B*B; higher precision or correctly rounded or
*> correctly truncated arithmetic would be needed to compute RT2
*> accurately in all cases.
*>
*> CS1 and SN1 are accurate to a few ulps barring over/underflow.
*>
*> Overflow is possible only if RT1 is within a factor of 5 of overflow.
*> Underflow is harmless if the input data is 0 or exceeds
*> underflow_threshold / macheps.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE SLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL A, B, C, CS1, RT1, RT2, SN1
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL TWO
PARAMETER ( TWO = 2.0E0 )
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL HALF
PARAMETER ( HALF = 0.5E0 )
* ..
* .. Local Scalars ..
INTEGER SGN1, SGN2
REAL AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
$ TB, TN
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Compute the eigenvalues
*
SM = A + C
DF = A - C
ADF = ABS( DF )
TB = B + B
AB = ABS( TB )
IF( ABS( A ).GT.ABS( C ) ) THEN
ACMX = A
ACMN = C
ELSE
ACMX = C
ACMN = A
END IF
IF( ADF.GT.AB ) THEN
RT = ADF*SQRT( ONE+( AB / ADF )**2 )
ELSE IF( ADF.LT.AB ) THEN
RT = AB*SQRT( ONE+( ADF / AB )**2 )
ELSE
*
* Includes case AB=ADF=0
*
RT = AB*SQRT( TWO )
END IF
IF( SM.LT.ZERO ) THEN
RT1 = HALF*( SM-RT )
SGN1 = -1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE IF( SM.GT.ZERO ) THEN
RT1 = HALF*( SM+RT )
SGN1 = 1
*
* Order of execution important.
* To get fully accurate smaller eigenvalue,
* next line needs to be executed in higher precision.
*
RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
ELSE
*
* Includes case RT1 = RT2 = 0
*
RT1 = HALF*RT
RT2 = -HALF*RT
SGN1 = 1
END IF
*
* Compute the eigenvector
*
IF( DF.GE.ZERO ) THEN
CS = DF + RT
SGN2 = 1
ELSE
CS = DF - RT
SGN2 = -1
END IF
ACS = ABS( CS )
IF( ACS.GT.AB ) THEN
CT = -TB / CS
SN1 = ONE / SQRT( ONE+CT*CT )
CS1 = CT*SN1
ELSE
IF( AB.EQ.ZERO ) THEN
CS1 = ONE
SN1 = ZERO
ELSE
TN = -CS / TB
CS1 = ONE / SQRT( ONE+TN*TN )
SN1 = TN*CS1
END IF
END IF
IF( SGN1.EQ.SGN2 ) THEN
TN = CS1
CS1 = -SN1
SN1 = TN
END IF
RETURN
*
* End of SLAEV2
*
END