*> \brief \b SLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLAQR1 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
*
* .. Scalar Arguments ..
* REAL SI1, SI2, SR1, SR2
* INTEGER LDH, N
* ..
* .. Array Arguments ..
* REAL H( LDH, * ), V( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given a 2-by-2 or 3-by-3 matrix H, SLAQR1 sets v to a
*> scalar multiple of the first column of the product
*>
*> (*) K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
*>
*> scaling to avoid overflows and most underflows. It
*> is assumed that either
*>
*> 1) sr1 = sr2 and si1 = -si2
*> or
*> 2) si1 = si2 = 0.
*>
*> This is useful for starting double implicit shift bulges
*> in the QR algorithm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Order of the matrix H. N must be either 2 or 3.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*> H is REAL array, dimension (LDH,N)
*> The 2-by-2 or 3-by-3 matrix H in (*).
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of H as declared in
*> the calling procedure. LDH >= N
*> \endverbatim
*>
*> \param[in] SR1
*> \verbatim
*> SR1 is REAL
*> \endverbatim
*>
*> \param[in] SI1
*> \verbatim
*> SI1 is REAL
*> \endverbatim
*>
*> \param[in] SR2
*> \verbatim
*> SR2 is REAL
*> \endverbatim
*>
*> \param[in] SI2
*> \verbatim
*> SI2 is REAL
*> The shifts in (*).
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is REAL array, dimension (N)
*> A scalar multiple of the first column of the
*> matrix K in (*).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realOTHERauxiliary
*
*> \par Contributors:
* ==================
*>
*> Karen Braman and Ralph Byers, Department of Mathematics,
*> University of Kansas, USA
*>
* =====================================================================
SUBROUTINE SLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
REAL SI1, SI2, SR1, SR2
INTEGER LDH, N
* ..
* .. Array Arguments ..
REAL H( LDH, * ), V( * )
* ..
*
* ================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0e0 )
* ..
* .. Local Scalars ..
REAL H21S, H31S, S
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.NE.2 .AND. N.NE.3 ) THEN
RETURN
END IF
*
IF( N.EQ.2 ) THEN
S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
IF( S.EQ.ZERO ) THEN
V( 1 ) = ZERO
V( 2 ) = ZERO
ELSE
H21S = H( 2, 1 ) / S
V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )*
$ ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
END IF
ELSE
S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) +
$ ABS( H( 3, 1 ) )
IF( S.EQ.ZERO ) THEN
V( 1 ) = ZERO
V( 2 ) = ZERO
V( 3 ) = ZERO
ELSE
H21S = H( 2, 1 ) / S
H31S = H( 3, 1 ) / S
V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) -
$ SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) +
$ H( 2, 3 )*H31S
V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) +
$ H21S*H( 3, 2 )
END IF
END IF
END