*> \brief \b SORBDB * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download SORBDB + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, * X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, * TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO ) * * .. Scalar Arguments .. * CHARACTER SIGNS, TRANS * INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P, * $ Q * .. * .. Array Arguments .. * REAL PHI( * ), THETA( * ) * REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ), * $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ), * $ X21( LDX21, * ), X22( LDX22, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> SORBDB simultaneously bidiagonalizes the blocks of an M-by-M *> partitioned orthogonal matrix X: *> *> [ B11 | B12 0 0 ] *> [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T *> X = [-----------] = [---------] [----------------] [---------] . *> [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] *> [ 0 | 0 0 I ] *> *> X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is *> not the case, then X must be transposed and/or permuted. This can be *> done in constant time using the TRANS and SIGNS options. See SORCSD *> for details.) *> *> The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- *> (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are *> represented implicitly by Householder vectors. *> *> B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented *> implicitly by angles THETA, PHI. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER *> = 'T': X, U1, U2, V1T, and V2T are stored in row-major *> order; *> otherwise: X, U1, U2, V1T, and V2T are stored in column- *> major order. *> \endverbatim *> *> \param[in] SIGNS *> \verbatim *> SIGNS is CHARACTER *> = 'O': The lower-left block is made nonpositive (the *> "other" convention); *> otherwise: The upper-right block is made nonpositive (the *> "default" convention). *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows and columns in X. *> \endverbatim *> *> \param[in] P *> \verbatim *> P is INTEGER *> The number of rows in X11 and X12. 0 <= P <= M. *> \endverbatim *> *> \param[in] Q *> \verbatim *> Q is INTEGER *> The number of columns in X11 and X21. 0 <= Q <= *> MIN(P,M-P,M-Q). *> \endverbatim *> *> \param[in,out] X11 *> \verbatim *> X11 is REAL array, dimension (LDX11,Q) *> On entry, the top-left block of the orthogonal matrix to be *> reduced. On exit, the form depends on TRANS: *> If TRANS = 'N', then *> the columns of tril(X11) specify reflectors for P1, *> the rows of triu(X11,1) specify reflectors for Q1; *> else TRANS = 'T', and *> the rows of triu(X11) specify reflectors for P1, *> the columns of tril(X11,-1) specify reflectors for Q1. *> \endverbatim *> *> \param[in] LDX11 *> \verbatim *> LDX11 is INTEGER *> The leading dimension of X11. If TRANS = 'N', then LDX11 >= *> P; else LDX11 >= Q. *> \endverbatim *> *> \param[in,out] X12 *> \verbatim *> X12 is REAL array, dimension (LDX12,M-Q) *> On entry, the top-right block of the orthogonal matrix to *> be reduced. On exit, the form depends on TRANS: *> If TRANS = 'N', then *> the rows of triu(X12) specify the first P reflectors for *> Q2; *> else TRANS = 'T', and *> the columns of tril(X12) specify the first P reflectors *> for Q2. *> \endverbatim *> *> \param[in] LDX12 *> \verbatim *> LDX12 is INTEGER *> The leading dimension of X12. If TRANS = 'N', then LDX12 >= *> P; else LDX11 >= M-Q. *> \endverbatim *> *> \param[in,out] X21 *> \verbatim *> X21 is REAL array, dimension (LDX21,Q) *> On entry, the bottom-left block of the orthogonal matrix to *> be reduced. On exit, the form depends on TRANS: *> If TRANS = 'N', then *> the columns of tril(X21) specify reflectors for P2; *> else TRANS = 'T', and *> the rows of triu(X21) specify reflectors for P2. *> \endverbatim *> *> \param[in] LDX21 *> \verbatim *> LDX21 is INTEGER *> The leading dimension of X21. If TRANS = 'N', then LDX21 >= *> M-P; else LDX21 >= Q. *> \endverbatim *> *> \param[in,out] X22 *> \verbatim *> X22 is REAL array, dimension (LDX22,M-Q) *> On entry, the bottom-right block of the orthogonal matrix to *> be reduced. On exit, the form depends on TRANS: *> If TRANS = 'N', then *> the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last *> M-P-Q reflectors for Q2, *> else TRANS = 'T', and *> the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last *> M-P-Q reflectors for P2. *> \endverbatim *> *> \param[in] LDX22 *> \verbatim *> LDX22 is INTEGER *> The leading dimension of X22. If TRANS = 'N', then LDX22 >= *> M-P; else LDX22 >= M-Q. *> \endverbatim *> *> \param[out] THETA *> \verbatim *> THETA is REAL array, dimension (Q) *> The entries of the bidiagonal blocks B11, B12, B21, B22 can *> be computed from the angles THETA and PHI. See Further *> Details. *> \endverbatim *> *> \param[out] PHI *> \verbatim *> PHI is REAL array, dimension (Q-1) *> The entries of the bidiagonal blocks B11, B12, B21, B22 can *> be computed from the angles THETA and PHI. See Further *> Details. *> \endverbatim *> *> \param[out] TAUP1 *> \verbatim *> TAUP1 is REAL array, dimension (P) *> The scalar factors of the elementary reflectors that define *> P1. *> \endverbatim *> *> \param[out] TAUP2 *> \verbatim *> TAUP2 is REAL array, dimension (M-P) *> The scalar factors of the elementary reflectors that define *> P2. *> \endverbatim *> *> \param[out] TAUQ1 *> \verbatim *> TAUQ1 is REAL array, dimension (Q) *> The scalar factors of the elementary reflectors that define *> Q1. *> \endverbatim *> *> \param[out] TAUQ2 *> \verbatim *> TAUQ2 is REAL array, dimension (M-Q) *> The scalar factors of the elementary reflectors that define *> Q2. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (LWORK) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. LWORK >= M-Q. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0: successful exit. *> < 0: if INFO = -i, the i-th argument had an illegal value. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup realOTHERcomputational * *> \par Further Details: * ===================== *> *> \verbatim *> *> The bidiagonal blocks B11, B12, B21, and B22 are represented *> implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., *> PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are *> lower bidiagonal. Every entry in each bidiagonal band is a product *> of a sine or cosine of a THETA with a sine or cosine of a PHI. See *> [1] or SORCSD for details. *> *> P1, P2, Q1, and Q2 are represented as products of elementary *> reflectors. See SORCSD for details on generating P1, P2, Q1, and Q2 *> using SORGQR and SORGLQ. *> \endverbatim * *> \par References: * ================ *> *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. *> Algorithms, 50(1):33-65, 2009. *> * ===================================================================== SUBROUTINE SORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, $ X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, $ TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER SIGNS, TRANS INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P, $ Q * .. * .. Array Arguments .. REAL PHI( * ), THETA( * ) REAL TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ), $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ), $ X21( LDX21, * ), X22( LDX22, * ) * .. * * ==================================================================== * * .. Parameters .. REAL REALONE PARAMETER ( REALONE = 1.0E0 ) REAL ONE PARAMETER ( ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL COLMAJOR, LQUERY INTEGER I, LWORKMIN, LWORKOPT REAL Z1, Z2, Z3, Z4 * .. * .. External Subroutines .. EXTERNAL SAXPY, SLARF, SLARFGP, SSCAL, XERBLA * .. * .. External Functions .. REAL SNRM2 LOGICAL LSAME EXTERNAL SNRM2, LSAME * .. * .. Intrinsic Functions INTRINSIC ATAN2, COS, MAX, SIN * .. * .. Executable Statements .. * * Test input arguments * INFO = 0 COLMAJOR = .NOT. LSAME( TRANS, 'T' ) IF( .NOT. LSAME( SIGNS, 'O' ) ) THEN Z1 = REALONE Z2 = REALONE Z3 = REALONE Z4 = REALONE ELSE Z1 = REALONE Z2 = -REALONE Z3 = REALONE Z4 = -REALONE END IF LQUERY = LWORK .EQ. -1 * IF( M .LT. 0 ) THEN INFO = -3 ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN INFO = -4 ELSE IF( Q .LT. 0 .OR. Q .GT. P .OR. Q .GT. M-P .OR. $ Q .GT. M-Q ) THEN INFO = -5 ELSE IF( COLMAJOR .AND. LDX11 .LT. MAX( 1, P ) ) THEN INFO = -7 ELSE IF( .NOT.COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN INFO = -7 ELSE IF( COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN INFO = -9 ELSE IF( .NOT.COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN INFO = -9 ELSE IF( COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN INFO = -11 ELSE IF( .NOT.COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN INFO = -11 ELSE IF( COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN INFO = -13 ELSE IF( .NOT.COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN INFO = -13 END IF * * Compute workspace * IF( INFO .EQ. 0 ) THEN LWORKOPT = M - Q LWORKMIN = M - Q WORK(1) = LWORKOPT IF( LWORK .LT. LWORKMIN .AND. .NOT. LQUERY ) THEN INFO = -21 END IF END IF IF( INFO .NE. 0 ) THEN CALL XERBLA( 'xORBDB', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Handle column-major and row-major separately * IF( COLMAJOR ) THEN * * Reduce columns 1, ..., Q of X11, X12, X21, and X22 * DO I = 1, Q * IF( I .EQ. 1 ) THEN CALL SSCAL( P-I+1, Z1, X11(I,I), 1 ) ELSE CALL SSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), 1 ) CALL SAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I,I-1), $ 1, X11(I,I), 1 ) END IF IF( I .EQ. 1 ) THEN CALL SSCAL( M-P-I+1, Z2, X21(I,I), 1 ) ELSE CALL SSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), 1 ) CALL SAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I,I-1), $ 1, X21(I,I), 1 ) END IF * THETA(I) = ATAN2( SNRM2( M-P-I+1, X21(I,I), 1 ), $ SNRM2( P-I+1, X11(I,I), 1 ) ) * IF( P .GT. I ) THEN CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) ) ELSE IF( P .EQ. I ) THEN CALL SLARFGP( P-I+1, X11(I,I), X11(I,I), 1, TAUP1(I) ) END IF X11(I,I) = ONE IF ( M-P .GT. I ) THEN CALL SLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, $ TAUP2(I) ) ELSE IF ( M-P .EQ. I ) THEN CALL SLARFGP( M-P-I+1, X21(I,I), X21(I,I), 1, TAUP2(I) ) END IF X21(I,I) = ONE * IF ( Q .GT. I ) THEN CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), $ X11(I,I+1), LDX11, WORK ) END IF IF ( M-Q+1 .GT. I ) THEN CALL SLARF( 'L', P-I+1, M-Q-I+1, X11(I,I), 1, TAUP1(I), $ X12(I,I), LDX12, WORK ) END IF IF ( Q .GT. I ) THEN CALL SLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I), $ X21(I,I+1), LDX21, WORK ) END IF IF ( M-Q+1 .GT. I ) THEN CALL SLARF( 'L', M-P-I+1, M-Q-I+1, X21(I,I), 1, TAUP2(I), $ X22(I,I), LDX22, WORK ) END IF * IF( I .LT. Q ) THEN CALL SSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I,I+1), $ LDX11 ) CALL SAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I,I+1), LDX21, $ X11(I,I+1), LDX11 ) END IF CALL SSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), LDX12 ) CALL SAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), LDX22, $ X12(I,I), LDX12 ) * IF( I .LT. Q ) $ PHI(I) = ATAN2( SNRM2( Q-I, X11(I,I+1), LDX11 ), $ SNRM2( M-Q-I+1, X12(I,I), LDX12 ) ) * IF( I .LT. Q ) THEN IF ( Q-I .EQ. 1 ) THEN CALL SLARFGP( Q-I, X11(I,I+1), X11(I,I+1), LDX11, $ TAUQ1(I) ) ELSE CALL SLARFGP( Q-I, X11(I,I+1), X11(I,I+2), LDX11, $ TAUQ1(I) ) END IF X11(I,I+1) = ONE END IF IF ( Q+I-1 .LT. M ) THEN IF ( M-Q .EQ. I ) THEN CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12, $ TAUQ2(I) ) ELSE CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12, $ TAUQ2(I) ) END IF END IF X12(I,I) = ONE * IF( I .LT. Q ) THEN CALL SLARF( 'R', P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I), $ X11(I+1,I+1), LDX11, WORK ) CALL SLARF( 'R', M-P-I, Q-I, X11(I,I+1), LDX11, TAUQ1(I), $ X21(I+1,I+1), LDX21, WORK ) END IF IF ( P .GT. I ) THEN CALL SLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I), $ X12(I+1,I), LDX12, WORK ) END IF IF ( M-P .GT. I ) THEN CALL SLARF( 'R', M-P-I, M-Q-I+1, X12(I,I), LDX12, $ TAUQ2(I), X22(I+1,I), LDX22, WORK ) END IF * END DO * * Reduce columns Q + 1, ..., P of X12, X22 * DO I = Q + 1, P * CALL SSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), LDX12 ) IF ( I .GE. M-Q ) THEN CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I), LDX12, $ TAUQ2(I) ) ELSE CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I+1), LDX12, $ TAUQ2(I) ) END IF X12(I,I) = ONE * IF ( P .GT. I ) THEN CALL SLARF( 'R', P-I, M-Q-I+1, X12(I,I), LDX12, TAUQ2(I), $ X12(I+1,I), LDX12, WORK ) END IF IF( M-P-Q .GE. 1 ) $ CALL SLARF( 'R', M-P-Q, M-Q-I+1, X12(I,I), LDX12, $ TAUQ2(I), X22(Q+1,I), LDX22, WORK ) * END DO * * Reduce columns P + 1, ..., M - Q of X12, X22 * DO I = 1, M - P - Q * CALL SSCAL( M-P-Q-I+1, Z2*Z4, X22(Q+I,P+I), LDX22 ) IF ( I .EQ. M-P-Q ) THEN CALL SLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I), $ LDX22, TAUQ2(P+I) ) ELSE CALL SLARFGP( M-P-Q-I+1, X22(Q+I,P+I), X22(Q+I,P+I+1), $ LDX22, TAUQ2(P+I) ) END IF X22(Q+I,P+I) = ONE IF ( I .LT. M-P-Q ) THEN CALL SLARF( 'R', M-P-Q-I, M-P-Q-I+1, X22(Q+I,P+I), LDX22, $ TAUQ2(P+I), X22(Q+I+1,P+I), LDX22, WORK ) END IF * END DO * ELSE * * Reduce columns 1, ..., Q of X11, X12, X21, X22 * DO I = 1, Q * IF( I .EQ. 1 ) THEN CALL SSCAL( P-I+1, Z1, X11(I,I), LDX11 ) ELSE CALL SSCAL( P-I+1, Z1*COS(PHI(I-1)), X11(I,I), LDX11 ) CALL SAXPY( P-I+1, -Z1*Z3*Z4*SIN(PHI(I-1)), X12(I-1,I), $ LDX12, X11(I,I), LDX11 ) END IF IF( I .EQ. 1 ) THEN CALL SSCAL( M-P-I+1, Z2, X21(I,I), LDX21 ) ELSE CALL SSCAL( M-P-I+1, Z2*COS(PHI(I-1)), X21(I,I), LDX21 ) CALL SAXPY( M-P-I+1, -Z2*Z3*Z4*SIN(PHI(I-1)), X22(I-1,I), $ LDX22, X21(I,I), LDX21 ) END IF * THETA(I) = ATAN2( SNRM2( M-P-I+1, X21(I,I), LDX21 ), $ SNRM2( P-I+1, X11(I,I), LDX11 ) ) * CALL SLARFGP( P-I+1, X11(I,I), X11(I,I+1), LDX11, TAUP1(I) ) X11(I,I) = ONE IF ( I .EQ. M-P ) THEN CALL SLARFGP( M-P-I+1, X21(I,I), X21(I,I), LDX21, $ TAUP2(I) ) ELSE CALL SLARFGP( M-P-I+1, X21(I,I), X21(I,I+1), LDX21, $ TAUP2(I) ) END IF X21(I,I) = ONE * IF ( Q .GT. I ) THEN CALL SLARF( 'R', Q-I, P-I+1, X11(I,I), LDX11, TAUP1(I), $ X11(I+1,I), LDX11, WORK ) END IF IF ( M-Q+1 .GT. I ) THEN CALL SLARF( 'R', M-Q-I+1, P-I+1, X11(I,I), LDX11, $ TAUP1(I), X12(I,I), LDX12, WORK ) END IF IF ( Q .GT. I ) THEN CALL SLARF( 'R', Q-I, M-P-I+1, X21(I,I), LDX21, TAUP2(I), $ X21(I+1,I), LDX21, WORK ) END IF IF ( M-Q+1 .GT. I ) THEN CALL SLARF( 'R', M-Q-I+1, M-P-I+1, X21(I,I), LDX21, $ TAUP2(I), X22(I,I), LDX22, WORK ) END IF * IF( I .LT. Q ) THEN CALL SSCAL( Q-I, -Z1*Z3*SIN(THETA(I)), X11(I+1,I), 1 ) CALL SAXPY( Q-I, Z2*Z3*COS(THETA(I)), X21(I+1,I), 1, $ X11(I+1,I), 1 ) END IF CALL SSCAL( M-Q-I+1, -Z1*Z4*SIN(THETA(I)), X12(I,I), 1 ) CALL SAXPY( M-Q-I+1, Z2*Z4*COS(THETA(I)), X22(I,I), 1, $ X12(I,I), 1 ) * IF( I .LT. Q ) $ PHI(I) = ATAN2( SNRM2( Q-I, X11(I+1,I), 1 ), $ SNRM2( M-Q-I+1, X12(I,I), 1 ) ) * IF( I .LT. Q ) THEN IF ( Q-I .EQ. 1) THEN CALL SLARFGP( Q-I, X11(I+1,I), X11(I+1,I), 1, $ TAUQ1(I) ) ELSE CALL SLARFGP( Q-I, X11(I+1,I), X11(I+2,I), 1, $ TAUQ1(I) ) END IF X11(I+1,I) = ONE END IF IF ( M-Q .GT. I ) THEN CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, $ TAUQ2(I) ) ELSE CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I,I), 1, $ TAUQ2(I) ) END IF X12(I,I) = ONE * IF( I .LT. Q ) THEN CALL SLARF( 'L', Q-I, P-I, X11(I+1,I), 1, TAUQ1(I), $ X11(I+1,I+1), LDX11, WORK ) CALL SLARF( 'L', Q-I, M-P-I, X11(I+1,I), 1, TAUQ1(I), $ X21(I+1,I+1), LDX21, WORK ) END IF CALL SLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I), $ X12(I,I+1), LDX12, WORK ) IF ( M-P-I .GT. 0 ) THEN CALL SLARF( 'L', M-Q-I+1, M-P-I, X12(I,I), 1, TAUQ2(I), $ X22(I,I+1), LDX22, WORK ) END IF * END DO * * Reduce columns Q + 1, ..., P of X12, X22 * DO I = Q + 1, P * CALL SSCAL( M-Q-I+1, -Z1*Z4, X12(I,I), 1 ) CALL SLARFGP( M-Q-I+1, X12(I,I), X12(I+1,I), 1, TAUQ2(I) ) X12(I,I) = ONE * IF ( P .GT. I ) THEN CALL SLARF( 'L', M-Q-I+1, P-I, X12(I,I), 1, TAUQ2(I), $ X12(I,I+1), LDX12, WORK ) END IF IF( M-P-Q .GE. 1 ) $ CALL SLARF( 'L', M-Q-I+1, M-P-Q, X12(I,I), 1, TAUQ2(I), $ X22(I,Q+1), LDX22, WORK ) * END DO * * Reduce columns P + 1, ..., M - Q of X12, X22 * DO I = 1, M - P - Q * CALL SSCAL( M-P-Q-I+1, Z2*Z4, X22(P+I,Q+I), 1 ) IF ( M-P-Q .EQ. I ) THEN CALL SLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I,Q+I), 1, $ TAUQ2(P+I) ) X22(P+I,Q+I) = ONE ELSE CALL SLARFGP( M-P-Q-I+1, X22(P+I,Q+I), X22(P+I+1,Q+I), 1, $ TAUQ2(P+I) ) X22(P+I,Q+I) = ONE CALL SLARF( 'L', M-P-Q-I+1, M-P-Q-I, X22(P+I,Q+I), 1, $ TAUQ2(P+I), X22(P+I,Q+I+1), LDX22, WORK ) END IF * * END DO * END IF * RETURN * * End of SORBDB * END