*> \brief \b SPBRFS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SPBRFS + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
* LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
* $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPBRFS improves the computed solution to a system of linear
*> equations when the coefficient matrix is symmetric positive definite
*> and banded, and provides error bounds and backward error estimates
*> for the solution.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of superdiagonals of the matrix A if UPLO = 'U',
*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is REAL array, dimension (LDAB,N)
*> The upper or lower triangle of the symmetric band matrix A,
*> stored in the first KD+1 rows of the array. The j-th column
*> of A is stored in the j-th column of the array AB as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in] AFB
*> \verbatim
*> AFB is REAL array, dimension (LDAFB,N)
*> The triangular factor U or L from the Cholesky factorization
*> A = U**T*U or A = L*L**T of the band matrix A as computed by
*> SPBTRF, in the same storage format as A (see AB).
*> \endverbatim
*>
*> \param[in] LDAFB
*> \verbatim
*> LDAFB is INTEGER
*> The leading dimension of the array AFB. LDAFB >= KD+1.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> The right hand side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is REAL array, dimension (LDX,NRHS)
*> On entry, the solution matrix X, as computed by SPBTRS.
*> On exit, the improved solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[out] FERR
*> \verbatim
*> FERR is REAL array, dimension (NRHS)
*> The estimated forward error bound for each solution vector
*> X(j) (the j-th column of the solution matrix X).
*> If XTRUE is the true solution corresponding to X(j), FERR(j)
*> is an estimated upper bound for the magnitude of the largest
*> element in (X(j) - XTRUE) divided by the magnitude of the
*> largest element in X(j). The estimate is as reliable as
*> the estimate for RCOND, and is almost always a slight
*> overestimate of the true error.
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> The componentwise relative backward error of each solution
*> vector X(j) (i.e., the smallest relative change in
*> any element of A or B that makes X(j) an exact solution).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> ITMAX is the maximum number of steps of iterative refinement.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE SPBRFS( UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B,
$ LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, KD, LDAB, LDAFB, LDB, LDX, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
$ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER ITMAX
PARAMETER ( ITMAX = 5 )
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
REAL TWO
PARAMETER ( TWO = 2.0E+0 )
REAL THREE
PARAMETER ( THREE = 3.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER COUNT, I, J, K, KASE, L, NZ
REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY, SLACN2, SPBTRS, SSBMV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH
EXTERNAL LSAME, SLAMCH
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KD.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.KD+1 ) THEN
INFO = -6
ELSE IF( LDAFB.LT.KD+1 ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SPBRFS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
DO 10 J = 1, NRHS
FERR( J ) = ZERO
BERR( J ) = ZERO
10 CONTINUE
RETURN
END IF
*
* NZ = maximum number of nonzero elements in each row of A, plus 1
*
NZ = MIN( N+1, 2*KD+2 )
EPS = SLAMCH( 'Epsilon' )
SAFMIN = SLAMCH( 'Safe minimum' )
SAFE1 = NZ*SAFMIN
SAFE2 = SAFE1 / EPS
*
* Do for each right hand side
*
DO 140 J = 1, NRHS
*
COUNT = 1
LSTRES = THREE
20 CONTINUE
*
* Loop until stopping criterion is satisfied.
*
* Compute residual R = B - A * X
*
CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
CALL SSBMV( UPLO, N, KD, -ONE, AB, LDAB, X( 1, J ), 1, ONE,
$ WORK( N+1 ), 1 )
*
* Compute componentwise relative backward error from formula
*
* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
*
* where abs(Z) is the componentwise absolute value of the matrix
* or vector Z. If the i-th component of the denominator is less
* than SAFE2, then SAFE1 is added to the i-th components of the
* numerator and denominator before dividing.
*
DO 30 I = 1, N
WORK( I ) = ABS( B( I, J ) )
30 CONTINUE
*
* Compute abs(A)*abs(X) + abs(B).
*
IF( UPPER ) THEN
DO 50 K = 1, N
S = ZERO
XK = ABS( X( K, J ) )
L = KD + 1 - K
DO 40 I = MAX( 1, K-KD ), K - 1
WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
40 CONTINUE
WORK( K ) = WORK( K ) + ABS( AB( KD+1, K ) )*XK + S
50 CONTINUE
ELSE
DO 70 K = 1, N
S = ZERO
XK = ABS( X( K, J ) )
WORK( K ) = WORK( K ) + ABS( AB( 1, K ) )*XK
L = 1 - K
DO 60 I = K + 1, MIN( N, K+KD )
WORK( I ) = WORK( I ) + ABS( AB( L+I, K ) )*XK
S = S + ABS( AB( L+I, K ) )*ABS( X( I, J ) )
60 CONTINUE
WORK( K ) = WORK( K ) + S
70 CONTINUE
END IF
S = ZERO
DO 80 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
ELSE
S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
$ ( WORK( I )+SAFE1 ) )
END IF
80 CONTINUE
BERR( J ) = S
*
* Test stopping criterion. Continue iterating if
* 1) The residual BERR(J) is larger than machine epsilon, and
* 2) BERR(J) decreased by at least a factor of 2 during the
* last iteration, and
* 3) At most ITMAX iterations tried.
*
IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
$ COUNT.LE.ITMAX ) THEN
*
* Update solution and try again.
*
CALL SPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
$ INFO )
CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
LSTRES = BERR( J )
COUNT = COUNT + 1
GO TO 20
END IF
*
* Bound error from formula
*
* norm(X - XTRUE) / norm(X) .le. FERR =
* norm( abs(inv(A))*
* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
*
* where
* norm(Z) is the magnitude of the largest component of Z
* inv(A) is the inverse of A
* abs(Z) is the componentwise absolute value of the matrix or
* vector Z
* NZ is the maximum number of nonzeros in any row of A, plus 1
* EPS is machine epsilon
*
* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
* is incremented by SAFE1 if the i-th component of
* abs(A)*abs(X) + abs(B) is less than SAFE2.
*
* Use SLACN2 to estimate the infinity-norm of the matrix
* inv(A) * diag(W),
* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) )))
*
DO 90 I = 1, N
IF( WORK( I ).GT.SAFE2 ) THEN
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
ELSE
WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
END IF
90 CONTINUE
*
KASE = 0
100 CONTINUE
CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
$ KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Multiply by diag(W)*inv(A**T).
*
CALL SPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
$ INFO )
DO 110 I = 1, N
WORK( N+I ) = WORK( N+I )*WORK( I )
110 CONTINUE
ELSE IF( KASE.EQ.2 ) THEN
*
* Multiply by inv(A)*diag(W).
*
DO 120 I = 1, N
WORK( N+I ) = WORK( N+I )*WORK( I )
120 CONTINUE
CALL SPBTRS( UPLO, N, KD, 1, AFB, LDAFB, WORK( N+1 ), N,
$ INFO )
END IF
GO TO 100
END IF
*
* Normalize error.
*
LSTRES = ZERO
DO 130 I = 1, N
LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
130 CONTINUE
IF( LSTRES.NE.ZERO )
$ FERR( J ) = FERR( J ) / LSTRES
*
140 CONTINUE
*
RETURN
*
* End of SPBRFS
*
END