*> \brief \b ZLAQSP scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by sppequ.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAQSP + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
*
* .. Scalar Arguments ..
* CHARACTER EQUED, UPLO
* INTEGER N
* DOUBLE PRECISION AMAX, SCOND
* ..
* .. Array Arguments ..
* DOUBLE PRECISION S( * )
* COMPLEX*16 AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAQSP equilibrates a symmetric matrix A using the scaling factors
*> in the vector S.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
*> On entry, the upper or lower triangle of the symmetric matrix
*> A, packed columnwise in a linear array. The j-th column of A
*> is stored in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*>
*> On exit, the equilibrated matrix: diag(S) * A * diag(S), in
*> the same storage format as A.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (N)
*> The scale factors for A.
*> \endverbatim
*>
*> \param[in] SCOND
*> \verbatim
*> SCOND is DOUBLE PRECISION
*> Ratio of the smallest S(i) to the largest S(i).
*> \endverbatim
*>
*> \param[in] AMAX
*> \verbatim
*> AMAX is DOUBLE PRECISION
*> Absolute value of largest matrix entry.
*> \endverbatim
*>
*> \param[out] EQUED
*> \verbatim
*> EQUED is CHARACTER*1
*> Specifies whether or not equilibration was done.
*> = 'N': No equilibration.
*> = 'Y': Equilibration was done, i.e., A has been replaced by
*> diag(S) * A * diag(S).
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> THRESH is a threshold value used to decide if scaling should be done
*> based on the ratio of the scaling factors. If SCOND < THRESH,
*> scaling is done.
*>
*> LARGE and SMALL are threshold values used to decide if scaling should
*> be done based on the absolute size of the largest matrix element.
*> If AMAX > LARGE or AMAX < SMALL, scaling is done.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERauxiliary
*
* =====================================================================
SUBROUTINE ZLAQSP( UPLO, N, AP, S, SCOND, AMAX, EQUED )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER EQUED, UPLO
INTEGER N
DOUBLE PRECISION AMAX, SCOND
* ..
* .. Array Arguments ..
DOUBLE PRECISION S( * )
COMPLEX*16 AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, THRESH
PARAMETER ( ONE = 1.0D+0, THRESH = 0.1D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, JC
DOUBLE PRECISION CJ, LARGE, SMALL
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, DLAMCH
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
EQUED = 'N'
RETURN
END IF
*
* Initialize LARGE and SMALL.
*
SMALL = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
LARGE = ONE / SMALL
*
IF( SCOND.GE.THRESH .AND. AMAX.GE.SMALL .AND. AMAX.LE.LARGE ) THEN
*
* No equilibration
*
EQUED = 'N'
ELSE
*
* Replace A by diag(S) * A * diag(S).
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Upper triangle of A is stored.
*
JC = 1
DO 20 J = 1, N
CJ = S( J )
DO 10 I = 1, J
AP( JC+I-1 ) = CJ*S( I )*AP( JC+I-1 )
10 CONTINUE
JC = JC + J
20 CONTINUE
ELSE
*
* Lower triangle of A is stored.
*
JC = 1
DO 40 J = 1, N
CJ = S( J )
DO 30 I = J, N
AP( JC+I-J ) = CJ*S( I )*AP( JC+I-J )
30 CONTINUE
JC = JC + N - J + 1
40 CONTINUE
END IF
EQUED = 'Y'
END IF
*
RETURN
*
* End of ZLAQSP
*
END