*> \brief \b CCKGSV * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CCKGSV( NM, MVAL, PVAL, NVAL, NMATS, ISEED, THRESH, * NMAX, A, AF, B, BF, U, V, Q, ALPHA, BETA, R, * IWORK, WORK, RWORK, NIN, NOUT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, NIN, NM, NMATS, NMAX, NOUT * REAL THRESH * .. * .. Array Arguments .. * INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * ), * $ PVAL( * ) * REAL ALPHA( * ), BETA( * ), RWORK( * ) * COMPLEX A( * ), AF( * ), B( * ), BF( * ), Q( * ), * $ R( * ), U( * ), V( * ), WORK( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CCKGSV tests CGGSVD: *> the GSVD for M-by-N matrix A and P-by-N matrix B. *> \endverbatim * * Arguments: * ========== * *> \param[in] NM *> \verbatim *> NM is INTEGER *> The number of values of M contained in the vector MVAL. *> \endverbatim *> *> \param[in] MVAL *> \verbatim *> MVAL is INTEGER array, dimension (NM) *> The values of the matrix row dimension M. *> \endverbatim *> *> \param[in] PVAL *> \verbatim *> PVAL is INTEGER array, dimension (NP) *> The values of the matrix row dimension P. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NMATS *> \verbatim *> NMATS is INTEGER *> The number of matrix types to be tested for each combination *> of matrix dimensions. If NMATS >= NTYPES (the maximum *> number of matrix types), then all the different types are *> generated for testing. If NMATS < NTYPES, another input line *> is read to get the numbers of the matrix types to be used. *> \endverbatim *> *> \param[in,out] ISEED *> \verbatim *> ISEED is INTEGER array, dimension (4) *> On entry, the seed of the random number generator. The array *> elements should be between 0 and 4095, otherwise they will be *> reduced mod 4096, and ISEED(4) must be odd. *> On exit, the next seed in the random number sequence after *> all the test matrices have been generated. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is REAL *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for M or N, used in dimensioning *> the work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AF *> \verbatim *> AF is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] BF *> \verbatim *> BF is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] U *> \verbatim *> U is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] V *> \verbatim *> V is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] Q *> \verbatim *> Q is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] ALPHA *> \verbatim *> ALPHA is REAL array, dimension (NMAX) *> \endverbatim *> *> \param[out] BETA *> \verbatim *> BETA is REAL array, dimension (NMAX) *> \endverbatim *> *> \param[out] R *> \verbatim *> R is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is REAL array, dimension (NMAX) *> \endverbatim *> *> \param[in] NIN *> \verbatim *> NIN is INTEGER *> The unit number for input. *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> = 0 : successful exit *> > 0 : If CLATMS returns an error code, the absolute value *> of it is returned. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CCKGSV( NM, MVAL, PVAL, NVAL, NMATS, ISEED, THRESH, $ NMAX, A, AF, B, BF, U, V, Q, ALPHA, BETA, R, $ IWORK, WORK, RWORK, NIN, NOUT, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, NIN, NM, NMATS, NMAX, NOUT REAL THRESH * .. * .. Array Arguments .. INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * ), $ PVAL( * ) REAL ALPHA( * ), BETA( * ), RWORK( * ) COMPLEX A( * ), AF( * ), B( * ), BF( * ), Q( * ), $ R( * ), U( * ), V( * ), WORK( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTESTS PARAMETER ( NTESTS = 12 ) INTEGER NTYPES PARAMETER ( NTYPES = 8 ) * .. * .. Local Scalars .. LOGICAL FIRSTT CHARACTER DISTA, DISTB, TYPE CHARACTER*3 PATH INTEGER I, IINFO, IM, IMAT, KLA, KLB, KUA, KUB, LDA, $ LDB, LDQ, LDR, LDU, LDV, LWORK, M, MODEA, $ MODEB, N, NFAIL, NRUN, NT, P REAL ANORM, BNORM, CNDNMA, CNDNMB * .. * .. Local Arrays .. LOGICAL DOTYPE( NTYPES ) REAL RESULT( NTESTS ) * .. * .. External Subroutines .. EXTERNAL ALAHDG, ALAREQ, ALASUM, CLATMS, SLATB9, CGSVTS3 * .. * .. Intrinsic Functions .. INTRINSIC ABS * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 3 ) = 'GSV' INFO = 0 NRUN = 0 NFAIL = 0 FIRSTT = .TRUE. CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT ) LDA = NMAX LDB = NMAX LDU = NMAX LDV = NMAX LDQ = NMAX LDR = NMAX LWORK = NMAX*NMAX * * Do for each value of M in MVAL. * DO 30 IM = 1, NM M = MVAL( IM ) P = PVAL( IM ) N = NVAL( IM ) * DO 20 IMAT = 1, NTYPES * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 20 * * Set up parameters with SLATB9 and generate test * matrices A and B with CLATMS. * CALL SLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, $ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, $ DISTA, DISTB ) * * Generate M by N matrix A * CALL CLATMS( M, N, DISTA, ISEED, TYPE, RWORK, MODEA, CNDNMA, $ ANORM, KLA, KUA, 'No packing', A, LDA, WORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9999 )IINFO INFO = ABS( IINFO ) GO TO 20 END IF * * Generate P by N matrix B * CALL CLATMS( P, N, DISTB, ISEED, TYPE, RWORK, MODEB, CNDNMB, $ BNORM, KLB, KUB, 'No packing', B, LDB, WORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9999 )IINFO INFO = ABS( IINFO ) GO TO 20 END IF * NT = 6 * CALL CGSVTS3( M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V, $ LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK, $ LWORK, RWORK, RESULT ) * * Print information about the tests that did not * pass the threshold. * DO 10 I = 1, NT IF( RESULT( I ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. FIRSTT ) THEN FIRSTT = .FALSE. CALL ALAHDG( NOUT, PATH ) END IF WRITE( NOUT, FMT = 9998 )M, P, N, IMAT, I, $ RESULT( I ) NFAIL = NFAIL + 1 END IF 10 CONTINUE NRUN = NRUN + NT * 20 CONTINUE 30 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, 0 ) * 9999 FORMAT( ' CLATMS in CCKGSV INFO = ', I5 ) 9998 FORMAT( ' M=', I4, ' P=', I4, ', N=', I4, ', type ', I2, $ ', test ', I2, ', ratio=', G13.6 ) RETURN * * End of CCKGSV * END