*> \brief \b CDRVST * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U, * LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK, * IWORK, LIWORK, RESULT, INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT, * $ NSIZES, NTYPES * REAL THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * REAL D1( * ), D2( * ), D3( * ), RESULT( * ), * $ RWORK( * ), WA1( * ), WA2( * ), WA3( * ) * COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ), * $ V( LDU, * ), WORK( * ), Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CDRVST checks the Hermitian eigenvalue problem drivers. *> *> CHEEVD computes all eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix, *> using a divide-and-conquer algorithm. *> *> CHEEVX computes selected eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix. *> *> CHEEVR computes selected eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix *> using the Relatively Robust Representation where it can. *> *> CHPEVD computes all eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix in packed *> storage, using a divide-and-conquer algorithm. *> *> CHPEVX computes selected eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix in packed *> storage. *> *> CHBEVD computes all eigenvalues and, optionally, *> eigenvectors of a complex Hermitian band matrix, *> using a divide-and-conquer algorithm. *> *> CHBEVX computes selected eigenvalues and, optionally, *> eigenvectors of a complex Hermitian band matrix. *> *> CHEEV computes all eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix. *> *> CHPEV computes all eigenvalues and, optionally, *> eigenvectors of a complex Hermitian matrix in packed *> storage. *> *> CHBEV computes all eigenvalues and, optionally, *> eigenvectors of a complex Hermitian band matrix. *> *> When CDRVST is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the appropriate drivers. For each matrix and each *> driver routine called, the following tests will be performed: *> *> (1) | A - Z D Z' | / ( |A| n ulp ) *> *> (2) | I - Z Z' | / ( n ulp ) *> *> (3) | D1 - D2 | / ( |D1| ulp ) *> *> where Z is the matrix of eigenvectors returned when the *> eigenvector option is given and D1 and D2 are the eigenvalues *> returned with and without the eigenvector option. *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> *> (3) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random signs. *> (ULP = (first number larger than 1) - 1 ) *> (4) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random signs. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random signs. *> *> (6) Same as (4), but multiplied by SQRT( overflow threshold ) *> (7) Same as (4), but multiplied by SQRT( underflow threshold ) *> *> (8) A matrix of the form U* D U, where U is unitary and *> D has evenly spaced entries 1, ..., ULP with random signs *> on the diagonal. *> *> (9) A matrix of the form U* D U, where U is unitary and *> D has geometrically spaced entries 1, ..., ULP with random *> signs on the diagonal. *> *> (10) A matrix of the form U* D U, where U is unitary and *> D has "clustered" entries 1, ULP,..., ULP with random *> signs on the diagonal. *> *> (11) Same as (8), but multiplied by SQRT( overflow threshold ) *> (12) Same as (8), but multiplied by SQRT( underflow threshold ) *> *> (13) Symmetric matrix with random entries chosen from (-1,1). *> (14) Same as (13), but multiplied by SQRT( overflow threshold ) *> (15) Same as (13), but multiplied by SQRT( underflow threshold ) *> (16) A band matrix with half bandwidth randomly chosen between *> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP *> with random signs. *> (17) Same as (16), but multiplied by SQRT( overflow threshold ) *> (18) Same as (16), but multiplied by SQRT( underflow threshold ) *> \endverbatim * * Arguments: * ========== * *> \verbatim *> NSIZES INTEGER *> The number of sizes of matrices to use. If it is zero, *> CDRVST does nothing. It must be at least zero. *> Not modified. *> *> NN INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> Not modified. *> *> NTYPES INTEGER *> The number of elements in DOTYPE. If it is zero, CDRVST *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> Not modified. *> *> DOTYPE LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> Not modified. *> *> ISEED INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to CDRVST to continue the same random number *> sequence. *> Modified. *> *> THRESH REAL *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> Not modified. *> *> NOUNIT INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> Not modified. *> *> A COMPLEX array, dimension (LDA , max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually *> used. *> Modified. *> *> LDA INTEGER *> The leading dimension of A. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> D1 REAL array, dimension (max(NN)) *> The eigenvalues of A, as computed by CSTEQR simlutaneously *> with Z. On exit, the eigenvalues in D1 correspond with the *> matrix in A. *> Modified. *> *> D2 REAL array, dimension (max(NN)) *> The eigenvalues of A, as computed by CSTEQR if Z is not *> computed. On exit, the eigenvalues in D2 correspond with *> the matrix in A. *> Modified. *> *> D3 REAL array, dimension (max(NN)) *> The eigenvalues of A, as computed by SSTERF. On exit, the *> eigenvalues in D3 correspond with the matrix in A. *> Modified. *> *> WA1 REAL array, dimension *> *> WA2 REAL array, dimension *> *> WA3 REAL array, dimension *> *> U COMPLEX array, dimension (LDU, max(NN)) *> The unitary matrix computed by CHETRD + CUNGC3. *> Modified. *> *> LDU INTEGER *> The leading dimension of U, Z, and V. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> V COMPLEX array, dimension (LDU, max(NN)) *> The Housholder vectors computed by CHETRD in reducing A to *> tridiagonal form. *> Modified. *> *> TAU COMPLEX array, dimension (max(NN)) *> The Householder factors computed by CHETRD in reducing A *> to tridiagonal form. *> Modified. *> *> Z COMPLEX array, dimension (LDU, max(NN)) *> The unitary matrix of eigenvectors computed by CHEEVD, *> CHEEVX, CHPEVD, CHPEVX, CHBEVD, and CHBEVX. *> Modified. *> *> WORK - COMPLEX array of dimension ( LWORK ) *> Workspace. *> Modified. *> *> LWORK - INTEGER *> The number of entries in WORK. This must be at least *> 2*max( NN(j), 2 )**2. *> Not modified. *> *> RWORK REAL array, dimension (3*max(NN)) *> Workspace. *> Modified. *> *> LRWORK - INTEGER *> The number of entries in RWORK. *> *> IWORK INTEGER array, dimension (6*max(NN)) *> Workspace. *> Modified. *> *> LIWORK - INTEGER *> The number of entries in IWORK. *> *> RESULT REAL array, dimension (??) *> The values computed by the tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> Modified. *> *> INFO INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -5: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -16: LDU < 1 or LDU < NMAX. *> -21: LWORK too small. *> If SLATMR, SLATMS, CHETRD, SORGC3, CSTEQR, SSTERF, *> or SORMC2 returns an error code, the *> absolute value of it is returned. *> Modified. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> NTEST The number of tests performed, or which can *> be performed so far, for the current matrix. *> NTESTT The total number of tests performed so far. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far (computed by SLAFTS). *> COND, IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL Square roots of the previous 2 values. *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_eig * * ===================================================================== SUBROUTINE CDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U, $ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK, $ IWORK, LIWORK, RESULT, INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT, $ NSIZES, NTYPES REAL THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) REAL D1( * ), D2( * ), D3( * ), RESULT( * ), $ RWORK( * ), WA1( * ), WA2( * ), WA3( * ) COMPLEX A( LDA, * ), TAU( * ), U( LDU, * ), $ V( LDU, * ), WORK( * ), Z( LDU, * ) * .. * * ===================================================================== * * * .. Parameters .. REAL ZERO, ONE, TWO, TEN PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0, $ TEN = 10.0E+0 ) REAL HALF PARAMETER ( HALF = ONE / TWO ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) INTEGER MAXTYP PARAMETER ( MAXTYP = 18 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER UPLO INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX, $ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL, $ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC, $ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX, $ NTEST, NTESTT REAL ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL, $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL, $ VL, VU * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ), $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) * .. * .. External Functions .. REAL SLAMCH, SLARND, SSXT1 EXTERNAL SLAMCH, SLARND, SSXT1 * .. * .. External Subroutines .. EXTERNAL ALASVM, CHBEV, CHBEVD, CHBEVX, CHEEV, CHEEVD, $ CHEEVR, CHEEVX, CHET21, CHET22, CHPEV, CHPEVD, $ CHPEVX, CLACPY, CLASET, CLATMR, CLATMS, SLABAD, $ SLAFTS, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, INT, LOG, MAX, MIN, REAL, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 / DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, $ 2, 3, 1, 2, 3 / DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0, 4, 4, 4 / * .. * .. Executable Statements .. * * 1) Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 1 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDU.LT.NMAX ) THEN INFO = -16 ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN INFO = -22 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CDRVST', -INFO ) RETURN END IF * * Quick return if nothing to do * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = SLAMCH( 'Safe minimum' ) OVFL = SLAMCH( 'Overflow' ) CALL SLABAD( UNFL, OVFL ) ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) * * Loop over sizes, types * DO 20 I = 1, 4 ISEED2( I ) = ISEED( I ) ISEED3( I ) = ISEED( I ) 20 CONTINUE * NERRS = 0 NMATS = 0 * DO 1220 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( N.GT.0 ) THEN LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) ) IF( 2**LGN.LT.N ) $ LGN = LGN + 1 IF( 2**LGN.LT.N ) $ LGN = LGN + 1 LWEDC = MAX( 2*N+N*N, 2*N*N ) LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2 LIWEDC = 3 + 5*N ELSE LWEDC = 2 LRWEDC = 8 LIWEDC = 8 END IF ANINV = ONE / REAL( MAX( 1, N ) ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 1210 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 1210 NMATS = NMATS + 1 NTEST = 0 * DO 30 J = 1, 4 IOLDSD( J ) = ISEED( J ) 30 CONTINUE * * 2) Compute "A" * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log Hermitian, w/ eigenvalues * =6 random (none) * =7 random diagonal * =8 random Hermitian * =9 band Hermitian, w/ eigenvalues * IF( MTYPES.GT.MAXTYP ) $ GO TO 110 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * * Zero * IF( ITYPE.EQ.1 ) THEN IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Hermitian, eigenvalues specified * CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK, IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Hermitian, random eigenvalues * CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * Hermitian banded, eigenvalues specified * IHBW = INT( ( N-1 )*SLARND( 1, ISEED3 ) ) CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK, $ IINFO ) * * Store as dense matrix for most routines. * CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) DO 100 IDIAG = -IHBW, IHBW IROW = IHBW - IDIAG + 1 J1 = MAX( 1, IDIAG+1 ) J2 = MIN( N, N+IDIAG ) DO 90 J = J1, J2 I = J - IDIAG A( I, J ) = U( IROW, J ) 90 CONTINUE 100 CONTINUE ELSE IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 110 CONTINUE * ABSTOL = UNFL + UNFL IF( N.LE.1 ) THEN IL = 1 IU = N ELSE IL = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) ) IU = 1 + INT( ( N-1 )*SLARND( 1, ISEED2 ) ) IF( IL.GT.IU ) THEN ITEMP = IL IL = IU IU = ITEMP END IF END IF * * Perform tests storing upper or lower triangular * part of matrix. * DO 1200 IUPLO = 0, 1 IF( IUPLO.EQ.0 ) THEN UPLO = 'L' ELSE UPLO = 'U' END IF * * Call CHEEVD and CHEEVX. * CALL CLACPY( ' ', N, N, A, LDA, V, LDU ) * NTEST = NTEST + 1 CALL CHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC, $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 130 END IF END IF * * Do tests 1 and 2. * CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 2 CALL CHEEVD( 'N', UPLO, N, A, LDU, D3, WORK, LWEDC, $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVD(N,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 130 END IF END IF * * Do test 3. * TEMP1 = ZERO TEMP2 = ZERO DO 120 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 120 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 130 CONTINUE CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 1 * IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) ) IF( IL.NE.1 ) THEN VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF ELSE TEMP3 = ZERO VL = ZERO VU = ONE END IF * CALL CHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 150 END IF END IF * * Do tests 4 and 5. * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL CHEEVX( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 150 END IF END IF * * Do test 6. * TEMP1 = ZERO TEMP2 = ZERO DO 140 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 140 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 150 CONTINUE CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 1 * CALL CHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 160 END IF END IF * * Do tests 7 and 8. * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * CALL CHEEVX( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 160 END IF END IF * * Do test 9. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 160 CONTINUE CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 1 * CALL CHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVX(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 170 END IF END IF * * Do tests 10 and 11. * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * CALL CHEEVX( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK, $ IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVX(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 170 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 170 END IF * * Do test 12. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 170 CONTINUE * * Call CHPEVD and CHPEVX. * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * * Load array WORK with the upper or lower triangular * part of the matrix in packed form. * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 190 J = 1, N DO 180 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 180 CONTINUE 190 CONTINUE ELSE INDX = 1 DO 210 J = 1, N DO 200 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 200 CONTINUE 210 CONTINUE END IF * NTEST = NTEST + 1 INDWRK = N*( N+1 ) / 2 + 1 CALL CHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU, $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK, $ LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 270 END IF END IF * * Do tests 13 and 14. * CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 230 J = 1, N DO 220 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 220 CONTINUE 230 CONTINUE ELSE INDX = 1 DO 250 J = 1, N DO 240 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 240 CONTINUE 250 CONTINUE END IF * NTEST = NTEST + 2 INDWRK = N*( N+1 ) / 2 + 1 CALL CHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU, $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK, $ LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVD(N,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 270 END IF END IF * * Do test 15. * TEMP1 = ZERO TEMP2 = ZERO DO 260 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 260 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * * Load array WORK with the upper or lower triangular part * of the matrix in packed form. * 270 CONTINUE IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 290 J = 1, N DO 280 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 280 CONTINUE 290 CONTINUE ELSE INDX = 1 DO 310 J = 1, N DO 300 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 300 CONTINUE 310 CONTINUE END IF * NTEST = NTEST + 1 * IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) ) IF( IL.NE.1 ) THEN VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF IF( IU.NE.N ) THEN VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) ELSE IF( N.GT.0 ) THEN VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ), $ TEN*ULP*TEMP3, TEN*RTUNFL ) END IF ELSE TEMP3 = ZERO VL = ZERO VU = ONE END IF * CALL CHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 370 END IF END IF * * Do tests 16 and 17. * CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 330 J = 1, N DO 320 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 320 CONTINUE 330 CONTINUE ELSE INDX = 1 DO 350 J = 1, N DO 340 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 340 CONTINUE 350 CONTINUE END IF * CALL CHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 370 END IF END IF * * Do test 18. * TEMP1 = ZERO TEMP2 = ZERO DO 360 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 360 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 370 CONTINUE NTEST = NTEST + 1 IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 390 J = 1, N DO 380 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 380 CONTINUE 390 CONTINUE ELSE INDX = 1 DO 410 J = 1, N DO 400 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 400 CONTINUE 410 CONTINUE END IF * CALL CHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 460 END IF END IF * * Do tests 19 and 20. * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 430 J = 1, N DO 420 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 420 CONTINUE 430 CONTINUE ELSE INDX = 1 DO 450 J = 1, N DO 440 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 440 CONTINUE 450 CONTINUE END IF * CALL CHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 460 END IF END IF * * Do test 21. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 460 CONTINUE NTEST = NTEST + 1 IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 480 J = 1, N DO 470 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 470 CONTINUE 480 CONTINUE ELSE INDX = 1 DO 500 J = 1, N DO 490 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 490 CONTINUE 500 CONTINUE END IF * CALL CHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVX(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 550 END IF END IF * * Do tests 22 and 23. * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 520 J = 1, N DO 510 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 510 CONTINUE 520 CONTINUE ELSE INDX = 1 DO 540 J = 1, N DO 530 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 530 CONTINUE 540 CONTINUE END IF * CALL CHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK, $ IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEVX(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 550 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 550 END IF * * Do test 24. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 550 CONTINUE * * Call CHBEVD and CHBEVX. * IF( JTYPE.LE.7 ) THEN KD = 0 ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN KD = MAX( N-1, 0 ) ELSE KD = IHBW END IF * * Load array V with the upper or lower triangular part * of the matrix in band form. * IF( IUPLO.EQ.1 ) THEN DO 570 J = 1, N DO 560 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 560 CONTINUE 570 CONTINUE ELSE DO 590 J = 1, N DO 580 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 580 CONTINUE 590 CONTINUE END IF * NTEST = NTEST + 1 CALL CHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK, $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVD(V,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 650 END IF END IF * * Do tests 25 and 26. * CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN DO 610 J = 1, N DO 600 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 600 CONTINUE 610 CONTINUE ELSE DO 630 J = 1, N DO 620 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 620 CONTINUE 630 CONTINUE END IF * NTEST = NTEST + 2 CALL CHBEVD( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK, $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVD(N,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 650 END IF END IF * * Do test 27. * TEMP1 = ZERO TEMP2 = ZERO DO 640 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 640 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * * Load array V with the upper or lower triangular part * of the matrix in band form. * 650 CONTINUE IF( IUPLO.EQ.1 ) THEN DO 670 J = 1, N DO 660 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 660 CONTINUE 670 CONTINUE ELSE DO 690 J = 1, N DO 680 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 680 CONTINUE 690 CONTINUE END IF * NTEST = NTEST + 1 CALL CHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK, $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHBEVX(V,A,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 750 END IF END IF * * Do tests 28 and 29. * CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN DO 710 J = 1, N DO 700 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 700 CONTINUE 710 CONTINUE ELSE DO 730 J = 1, N DO 720 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 720 CONTINUE 730 CONTINUE END IF * CALL CHBEVX( 'N', 'A', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK, $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,A,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 750 END IF END IF * * Do test 30. * TEMP1 = ZERO TEMP2 = ZERO DO 740 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 740 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * * Load array V with the upper or lower triangular part * of the matrix in band form. * 750 CONTINUE NTEST = NTEST + 1 IF( IUPLO.EQ.1 ) THEN DO 770 J = 1, N DO 760 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 760 CONTINUE 770 CONTINUE ELSE DO 790 J = 1, N DO 780 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 780 CONTINUE 790 CONTINUE END IF * CALL CHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK, $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,I,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 840 END IF END IF * * Do tests 31 and 32. * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN DO 810 J = 1, N DO 800 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 800 CONTINUE 810 CONTINUE ELSE DO 830 J = 1, N DO 820 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 820 CONTINUE 830 CONTINUE END IF CALL CHBEVX( 'N', 'I', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK, $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,I,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 840 END IF END IF * * Do test 33. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * * Load array V with the upper or lower triangular part * of the matrix in band form. * 840 CONTINUE NTEST = NTEST + 1 IF( IUPLO.EQ.1 ) THEN DO 860 J = 1, N DO 850 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 850 CONTINUE 860 CONTINUE ELSE DO 880 J = 1, N DO 870 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 870 CONTINUE 880 CONTINUE END IF CALL CHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK, $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVX(V,V,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 930 END IF END IF * * Do tests 34 and 35. * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 * IF( IUPLO.EQ.1 ) THEN DO 900 J = 1, N DO 890 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 890 CONTINUE 900 CONTINUE ELSE DO 920 J = 1, N DO 910 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 910 CONTINUE 920 CONTINUE END IF CALL CHBEVX( 'N', 'V', UPLO, N, KD, V, LDU, U, LDU, VL, $ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK, $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEVX(N,V,' // UPLO // $ ')', IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 930 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 930 END IF * * Do test 36. * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * 930 CONTINUE * * Call CHEEV * CALL CLACPY( ' ', N, N, A, LDA, V, LDU ) * NTEST = NTEST + 1 CALL CHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEV(V,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 950 END IF END IF * * Do tests 37 and 38 * CALL CHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * NTEST = NTEST + 2 CALL CHEEV( 'N', UPLO, N, A, LDU, D3, WORK, LWORK, RWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEV(N,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 950 END IF END IF * * Do test 39 * TEMP1 = ZERO TEMP2 = ZERO DO 940 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 940 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 950 CONTINUE * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * * Call CHPEV * * Load array WORK with the upper or lower triangular * part of the matrix in packed form. * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 970 J = 1, N DO 960 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 960 CONTINUE 970 CONTINUE ELSE INDX = 1 DO 990 J = 1, N DO 980 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 980 CONTINUE 990 CONTINUE END IF * NTEST = NTEST + 1 INDWRK = N*( N+1 ) / 2 + 1 CALL CHPEV( 'V', UPLO, N, WORK, D1, Z, LDU, $ WORK( INDWRK ), RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEV(V,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1050 END IF END IF * * Do tests 40 and 41. * CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN INDX = 1 DO 1010 J = 1, N DO 1000 I = 1, J WORK( INDX ) = A( I, J ) INDX = INDX + 1 1000 CONTINUE 1010 CONTINUE ELSE INDX = 1 DO 1030 J = 1, N DO 1020 I = J, N WORK( INDX ) = A( I, J ) INDX = INDX + 1 1020 CONTINUE 1030 CONTINUE END IF * NTEST = NTEST + 2 INDWRK = N*( N+1 ) / 2 + 1 CALL CHPEV( 'N', UPLO, N, WORK, D3, Z, LDU, $ WORK( INDWRK ), RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHPEV(N,' // UPLO // ')', $ IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1050 END IF END IF * * Do test 42 * TEMP1 = ZERO TEMP2 = ZERO DO 1040 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 1040 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 1050 CONTINUE * * Call CHBEV * IF( JTYPE.LE.7 ) THEN KD = 0 ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN KD = MAX( N-1, 0 ) ELSE KD = IHBW END IF * * Load array V with the upper or lower triangular part * of the matrix in band form. * IF( IUPLO.EQ.1 ) THEN DO 1070 J = 1, N DO 1060 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1060 CONTINUE 1070 CONTINUE ELSE DO 1090 J = 1, N DO 1080 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1080 CONTINUE 1090 CONTINUE END IF * NTEST = NTEST + 1 CALL CHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK, $ RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEV(V,' // UPLO // ')', $ IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1140 END IF END IF * * Do tests 43 and 44. * CALL CHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * IF( IUPLO.EQ.1 ) THEN DO 1110 J = 1, N DO 1100 I = MAX( 1, J-KD ), J V( KD+1+I-J, J ) = A( I, J ) 1100 CONTINUE 1110 CONTINUE ELSE DO 1130 J = 1, N DO 1120 I = J, MIN( N, J+KD ) V( 1+I-J, J ) = A( I, J ) 1120 CONTINUE 1130 CONTINUE END IF * NTEST = NTEST + 2 CALL CHBEV( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK, $ RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9998 )'CHBEV(N,' // UPLO // ')', $ IINFO, N, KD, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1140 END IF END IF * 1140 CONTINUE * * Do test 45. * TEMP1 = ZERO TEMP2 = ZERO DO 1150 J = 1, N TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) ) 1150 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * CALL CLACPY( ' ', N, N, A, LDA, V, LDU ) NTEST = NTEST + 1 CALL CHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK, $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1170 END IF END IF * * Do tests 45 and 46 (or ... ) * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL CHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V, $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL CHEEVR( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,A,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1170 END IF END IF * * Do test 47 (or ... ) * TEMP1 = ZERO TEMP2 = ZERO DO 1160 J = 1, N TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) ) 1160 CONTINUE RESULT( NTEST ) = TEMP2 / MAX( UNFL, $ ULP*MAX( TEMP1, TEMP2 ) ) * 1170 CONTINUE * NTEST = NTEST + 1 CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) CALL CHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1180 END IF END IF * * Do tests 48 and 49 (or +??) * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) CALL CHEEVR( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK, $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,I,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1180 END IF END IF * * Do test 50 (or +??) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, ULP*TEMP3 ) 1180 CONTINUE * NTEST = NTEST + 1 CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) CALL CHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK, $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVR(V,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV RESULT( NTEST+1 ) = ULPINV RESULT( NTEST+2 ) = ULPINV GO TO 1190 END IF END IF * * Do tests 51 and 52 (or +??) * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * CALL CHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU, $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) ) * NTEST = NTEST + 2 CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) CALL CHEEVR( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU, $ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK, $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'CHEEVR(N,V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 1190 END IF END IF * IF( M3.EQ.0 .AND. N.GT.0 ) THEN RESULT( NTEST ) = ULPINV GO TO 1190 END IF * * Do test 52 (or +??) * TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL ) TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL ) IF( N.GT.0 ) THEN TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) ) ELSE TEMP3 = ZERO END IF RESULT( NTEST ) = ( TEMP1+TEMP2 ) / $ MAX( UNFL, TEMP3*ULP ) * CALL CLACPY( ' ', N, N, V, LDU, A, LDA ) * * * * * Load array V with the upper or lower triangular part * of the matrix in band form. * 1190 CONTINUE * 1200 CONTINUE * * End of Loop -- Check for RESULT(j) > THRESH * NTESTT = NTESTT + NTEST CALL SLAFTS( 'CST', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) * 1210 CONTINUE 1220 CONTINUE * * Summary * CALL ALASVM( 'CST', NOUNIT, NERRS, NTESTT, 0 ) * 9999 FORMAT( ' CDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6, $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) 9998 FORMAT( ' CDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6, $ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, $ ')' ) * RETURN * * End of CDRVST * END