*> \brief \b DCHKEE * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * PROGRAM DCHKEE * * *> \par Purpose: * ============= *> *> \verbatim *> *> DCHKEE tests the DOUBLE PRECISION LAPACK subroutines for the matrix *> eigenvalue problem. The test paths in this version are *> *> NEP (Nonsymmetric Eigenvalue Problem): *> Test DGEHRD, DORGHR, DHSEQR, DTREVC, DHSEIN, and DORMHR *> *> SEP (Symmetric Eigenvalue Problem): *> Test DSYTRD, DORGTR, DSTEQR, DSTERF, DSTEIN, DSTEDC, *> and drivers DSYEV(X), DSBEV(X), DSPEV(X), DSTEV(X), *> DSYEVD, DSBEVD, DSPEVD, DSTEVD *> *> SVD (Singular Value Decomposition): *> Test DGEBRD, DORGBR, DBDSQR, DBDSDC *> and the drivers DGESVD, DGESDD *> *> DEV (Nonsymmetric Eigenvalue/eigenvector Driver): *> Test DGEEV *> *> DES (Nonsymmetric Schur form Driver): *> Test DGEES *> *> DVX (Nonsymmetric Eigenvalue/eigenvector Expert Driver): *> Test DGEEVX *> *> DSX (Nonsymmetric Schur form Expert Driver): *> Test DGEESX *> *> DGG (Generalized Nonsymmetric Eigenvalue Problem): *> Test DGGHD3, DGGBAL, DGGBAK, DHGEQZ, and DTGEVC *> *> DGS (Generalized Nonsymmetric Schur form Driver): *> Test DGGES *> *> DGV (Generalized Nonsymmetric Eigenvalue/eigenvector Driver): *> Test DGGEV *> *> DGX (Generalized Nonsymmetric Schur form Expert Driver): *> Test DGGESX *> *> DXV (Generalized Nonsymmetric Eigenvalue/eigenvector Expert Driver): *> Test DGGEVX *> *> DSG (Symmetric Generalized Eigenvalue Problem): *> Test DSYGST, DSYGV, DSYGVD, DSYGVX, DSPGST, DSPGV, DSPGVD, *> DSPGVX, DSBGST, DSBGV, DSBGVD, and DSBGVX *> *> DSB (Symmetric Band Eigenvalue Problem): *> Test DSBTRD *> *> DBB (Band Singular Value Decomposition): *> Test DGBBRD *> *> DEC (Eigencondition estimation): *> Test DLALN2, DLASY2, DLAEQU, DLAEXC, DTRSYL, DTREXC, DTRSNA, *> DTRSEN, and DLAQTR *> *> DBL (Balancing a general matrix) *> Test DGEBAL *> *> DBK (Back transformation on a balanced matrix) *> Test DGEBAK *> *> DGL (Balancing a matrix pair) *> Test DGGBAL *> *> DGK (Back transformation on a matrix pair) *> Test DGGBAK *> *> GLM (Generalized Linear Regression Model): *> Tests DGGGLM *> *> GQR (Generalized QR and RQ factorizations): *> Tests DGGQRF and DGGRQF *> *> GSV (Generalized Singular Value Decomposition): *> Tests DGGSVD, DGGSVP, DTGSJA, DLAGS2, DLAPLL, and DLAPMT *> *> CSD (CS decomposition): *> Tests DORCSD *> *> LSE (Constrained Linear Least Squares): *> Tests DGGLSE *> *> Each test path has a different set of inputs, but the data sets for *> the driver routines xEV, xES, xVX, and xSX can be concatenated in a *> single input file. The first line of input should contain one of the *> 3-character path names in columns 1-3. The number of remaining lines *> depends on what is found on the first line. *> *> The number of matrix types used in testing is often controllable from *> the input file. The number of matrix types for each path, and the *> test routine that describes them, is as follows: *> *> Path name(s) Types Test routine *> *> DHS or NEP 21 DCHKHS *> DST or SEP 21 DCHKST (routines) *> 18 DDRVST (drivers) *> DBD or SVD 16 DCHKBD (routines) *> 5 DDRVBD (drivers) *> DEV 21 DDRVEV *> DES 21 DDRVES *> DVX 21 DDRVVX *> DSX 21 DDRVSX *> DGG 26 DCHKGG (routines) *> DGS 26 DDRGES *> DGX 5 DDRGSX *> DGV 26 DDRGEV *> DXV 2 DDRGVX *> DSG 21 DDRVSG *> DSB 15 DCHKSB *> DBB 15 DCHKBB *> DEC - DCHKEC *> DBL - DCHKBL *> DBK - DCHKBK *> DGL - DCHKGL *> DGK - DCHKGK *> GLM 8 DCKGLM *> GQR 8 DCKGQR *> GSV 8 DCKGSV *> CSD 3 DCKCSD *> LSE 8 DCKLSE *> *>----------------------------------------------------------------------- *> *> NEP input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NPARMS, INTEGER *> Number of values of the parameters NB, NBMIN, NX, NS, and *> MAXB. *> *> line 5: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 6: NBMIN, INTEGER array, dimension (NPARMS) *> The values for the minimum blocksize NBMIN. *> *> line 7: NXVAL, INTEGER array, dimension (NPARMS) *> The values for the crossover point NX. *> *> line 8: INMIN, INTEGER array, dimension (NPARMS) *> LAHQR vs TTQRE crossover point, >= 11 *> *> line 9: INWIN, INTEGER array, dimension (NPARMS) *> recommended deflation window size *> *> line 10: INIBL, INTEGER array, dimension (NPARMS) *> nibble crossover point *> *> line 11: ISHFTS, INTEGER array, dimension (NPARMS) *> number of simultaneous shifts) *> *> line 12: IACC22, INTEGER array, dimension (NPARMS) *> select structured matrix multiply: 0, 1 or 2) *> *> line 13: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. To have all of the test *> ratios printed, use THRESH = 0.0 . *> *> line 14: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 14 was 2: *> *> line 15: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 15-EOF: The remaining lines occur in sets of 1 or 2 and allow *> the user to specify the matrix types. Each line contains *> a 3-character path name in columns 1-3, and the number *> of matrix types must be the first nonblank item in columns *> 4-80. If the number of matrix types is at least 1 but is *> less than the maximum number of possible types, a second *> line will be read to get the numbers of the matrix types to *> be used. For example, *> NEP 21 *> requests all of the matrix types for the nonsymmetric *> eigenvalue problem, while *> NEP 4 *> 9 10 11 12 *> requests only matrices of type 9, 10, 11, and 12. *> *> The valid 3-character path names are 'NEP' or 'SHS' for the *> nonsymmetric eigenvalue routines. *> *>----------------------------------------------------------------------- *> *> SEP or DSG input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NPARMS, INTEGER *> Number of values of the parameters NB, NBMIN, and NX. *> *> line 5: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 6: NBMIN, INTEGER array, dimension (NPARMS) *> The values for the minimum blocksize NBMIN. *> *> line 7: NXVAL, INTEGER array, dimension (NPARMS) *> The values for the crossover point NX. *> *> line 8: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 9: TSTCHK, LOGICAL *> Flag indicating whether or not to test the LAPACK routines. *> *> line 10: TSTDRV, LOGICAL *> Flag indicating whether or not to test the driver routines. *> *> line 11: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 12: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 12 was 2: *> *> line 13: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 13-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path names are 'SEP' or 'SST' for the *> symmetric eigenvalue routines and driver routines, and *> 'DSG' for the routines for the symmetric generalized *> eigenvalue problem. *> *>----------------------------------------------------------------------- *> *> SVD input file: *> *> line 2: NN, INTEGER *> Number of values of M and N. *> *> line 3: MVAL, INTEGER array, dimension (NN) *> The values for the matrix row dimension M. *> *> line 4: NVAL, INTEGER array, dimension (NN) *> The values for the matrix column dimension N. *> *> line 5: NPARMS, INTEGER *> Number of values of the parameter NB, NBMIN, NX, and NRHS. *> *> line 6: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 7: NBMIN, INTEGER array, dimension (NPARMS) *> The values for the minimum blocksize NBMIN. *> *> line 8: NXVAL, INTEGER array, dimension (NPARMS) *> The values for the crossover point NX. *> *> line 9: NSVAL, INTEGER array, dimension (NPARMS) *> The values for the number of right hand sides NRHS. *> *> line 10: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 11: TSTCHK, LOGICAL *> Flag indicating whether or not to test the LAPACK routines. *> *> line 12: TSTDRV, LOGICAL *> Flag indicating whether or not to test the driver routines. *> *> line 13: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 14: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 14 was 2: *> *> line 15: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 15-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path names are 'SVD' or 'SBD' for both the *> SVD routines and the SVD driver routines. *> *>----------------------------------------------------------------------- *> *> DEV and DES data files: *> *> line 1: 'DEV' or 'DES' in columns 1 to 3. *> *> line 2: NSIZES, INTEGER *> Number of sizes of matrices to use. Should be at least 0 *> and at most 20. If NSIZES = 0, no testing is done *> (although the remaining 3 lines are still read). *> *> line 3: NN, INTEGER array, dimension(NSIZES) *> Dimensions of matrices to be tested. *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHSEQR *> NBCOL : minimum column dimension for blocking *> *> line 5: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> If it is 0., all test case data will be printed. *> *> line 6: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits. *> *> line 7: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 7 was 2: *> *> line 8: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9 and following: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'DEV' to test SGEEV, or *> 'DES' to test SGEES. *> *>----------------------------------------------------------------------- *> *> The DVX data has two parts. The first part is identical to DEV, *> and the second part consists of test matrices with precomputed *> solutions. *> *> line 1: 'DVX' in columns 1-3. *> *> line 2: NSIZES, INTEGER *> If NSIZES = 0, no testing of randomly generated examples *> is done, but any precomputed examples are tested. *> *> line 3: NN, INTEGER array, dimension(NSIZES) *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> *> line 5: THRESH, REAL *> *> line 6: TSTERR, LOGICAL *> *> line 7: NEWSD, INTEGER *> *> If line 7 was 2: *> *> line 8: INTEGER array, dimension (4) *> *> lines 9 and following: The first line contains 'DVX' in columns 1-3 *> followed by the number of matrix types, possibly with *> a second line to specify certain matrix types. *> If the number of matrix types = 0, no testing of randomly *> generated examples is done, but any precomputed examples *> are tested. *> *> remaining lines : Each matrix is stored on 1+2*N lines, where N is *> its dimension. The first line contains the dimension (a *> single integer). The next N lines contain the matrix, one *> row per line. The last N lines correspond to each *> eigenvalue. Each of these last N lines contains 4 real *> values: the real part of the eigenvalue, the imaginary *> part of the eigenvalue, the reciprocal condition number of *> the eigenvalues, and the reciprocal condition number of the *> eigenvector. The end of data is indicated by dimension N=0. *> Even if no data is to be tested, there must be at least one *> line containing N=0. *> *>----------------------------------------------------------------------- *> *> The DSX data is like DVX. The first part is identical to DEV, and the *> second part consists of test matrices with precomputed solutions. *> *> line 1: 'DSX' in columns 1-3. *> *> line 2: NSIZES, INTEGER *> If NSIZES = 0, no testing of randomly generated examples *> is done, but any precomputed examples are tested. *> *> line 3: NN, INTEGER array, dimension(NSIZES) *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> *> line 5: THRESH, REAL *> *> line 6: TSTERR, LOGICAL *> *> line 7: NEWSD, INTEGER *> *> If line 7 was 2: *> *> line 8: INTEGER array, dimension (4) *> *> lines 9 and following: The first line contains 'DSX' in columns 1-3 *> followed by the number of matrix types, possibly with *> a second line to specify certain matrix types. *> If the number of matrix types = 0, no testing of randomly *> generated examples is done, but any precomputed examples *> are tested. *> *> remaining lines : Each matrix is stored on 3+N lines, where N is its *> dimension. The first line contains the dimension N and the *> dimension M of an invariant subspace. The second line *> contains M integers, identifying the eigenvalues in the *> invariant subspace (by their position in a list of *> eigenvalues ordered by increasing real part). The next N *> lines contain the matrix. The last line contains the *> reciprocal condition number for the average of the selected *> eigenvalues, and the reciprocal condition number for the *> corresponding right invariant subspace. The end of data is *> indicated by a line containing N=0 and M=0. Even if no data *> is to be tested, there must be at least one line containing *> N=0 and M=0. *> *>----------------------------------------------------------------------- *> *> DGG input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NPARMS, INTEGER *> Number of values of the parameters NB, NBMIN, NS, MAXB, and *> NBCOL. *> *> line 5: NBVAL, INTEGER array, dimension (NPARMS) *> The values for the blocksize NB. *> *> line 6: NBMIN, INTEGER array, dimension (NPARMS) *> The values for NBMIN, the minimum row dimension for blocks. *> *> line 7: NSVAL, INTEGER array, dimension (NPARMS) *> The values for the number of shifts. *> *> line 8: MXBVAL, INTEGER array, dimension (NPARMS) *> The values for MAXB, used in determining minimum blocksize. *> *> line 9: IACC22, INTEGER array, dimension (NPARMS) *> select structured matrix multiply: 1 or 2) *> *> line 10: NBCOL, INTEGER array, dimension (NPARMS) *> The values for NBCOL, the minimum column dimension for *> blocks. *> *> line 11: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 12: TSTCHK, LOGICAL *> Flag indicating whether or not to test the LAPACK routines. *> *> line 13: TSTDRV, LOGICAL *> Flag indicating whether or not to test the driver routines. *> *> line 14: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 15: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 15 was 2: *> *> line 16: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 17-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'DGG' for the generalized *> eigenvalue problem routines and driver routines. *> *>----------------------------------------------------------------------- *> *> DGS and DGV input files: *> *> line 1: 'DGS' or 'DGV' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension(NN) *> Dimensions of matrices to be tested. *> *> line 4: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHGEQR *> NBCOL : minimum column dimension for blocking *> *> line 5: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> If it is 0., all test case data will be printed. *> *> line 6: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits. *> *> line 7: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 17 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 7-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'DGS' for the generalized *> eigenvalue problem routines and driver routines. *> *>----------------------------------------------------------------------- *> *> DXV input files: *> *> line 1: 'DXV' in columns 1 to 3. *> *> line 2: N, INTEGER *> Value of N. *> *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHGEQR *> NBCOL : minimum column dimension for blocking *> *> line 4: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> Information will be printed about each test for which the *> test ratio is greater than or equal to the threshold. *> *> line 5: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 6: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> If line 2 was 0: *> *> line 7-EOF: Precomputed examples are tested. *> *> remaining lines : Each example is stored on 3+2*N lines, where N is *> its dimension. The first line contains the dimension (a *> single integer). The next N lines contain the matrix A, one *> row per line. The next N lines contain the matrix B. The *> next line contains the reciprocals of the eigenvalue *> condition numbers. The last line contains the reciprocals of *> the eigenvector condition numbers. The end of data is *> indicated by dimension N=0. Even if no data is to be tested, *> there must be at least one line containing N=0. *> *>----------------------------------------------------------------------- *> *> DGX input files: *> *> line 1: 'DGX' in columns 1 to 3. *> *> line 2: N, INTEGER *> Value of N. *> *> line 3: NB, NBMIN, NX, NS, NBCOL, INTEGERs *> These integer parameters determine how blocking is done *> (see ILAENV for details) *> NB : block size *> NBMIN : minimum block size *> NX : minimum dimension for blocking *> NS : number of shifts in xHGEQR *> NBCOL : minimum column dimension for blocking *> *> line 4: THRESH, REAL *> The test threshold against which computed residuals are *> compared. Should generally be in the range from 10. to 20. *> Information will be printed about each test for which the *> test ratio is greater than or equal to the threshold. *> *> line 5: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 6: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 6 was 2: *> *> line 7: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> If line 2 was 0: *> *> line 7-EOF: Precomputed examples are tested. *> *> remaining lines : Each example is stored on 3+2*N lines, where N is *> its dimension. The first line contains the dimension (a *> single integer). The next line contains an integer k such *> that only the last k eigenvalues will be selected and appear *> in the leading diagonal blocks of $A$ and $B$. The next N *> lines contain the matrix A, one row per line. The next N *> lines contain the matrix B. The last line contains the *> reciprocal of the eigenvalue cluster condition number and the *> reciprocal of the deflating subspace (associated with the *> selected eigencluster) condition number. The end of data is *> indicated by dimension N=0. Even if no data is to be tested, *> there must be at least one line containing N=0. *> *>----------------------------------------------------------------------- *> *> DSB input file: *> *> line 2: NN, INTEGER *> Number of values of N. *> *> line 3: NVAL, INTEGER array, dimension (NN) *> The values for the matrix dimension N. *> *> line 4: NK, INTEGER *> Number of values of K. *> *> line 5: KVAL, INTEGER array, dimension (NK) *> The values for the matrix dimension K. *> *> line 6: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 7 was 2: *> *> line 8: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 8-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'DSB'. *> *>----------------------------------------------------------------------- *> *> DBB input file: *> *> line 2: NN, INTEGER *> Number of values of M and N. *> *> line 3: MVAL, INTEGER array, dimension (NN) *> The values for the matrix row dimension M. *> *> line 4: NVAL, INTEGER array, dimension (NN) *> The values for the matrix column dimension N. *> *> line 4: NK, INTEGER *> Number of values of K. *> *> line 5: KVAL, INTEGER array, dimension (NK) *> The values for the matrix bandwidth K. *> *> line 6: NPARMS, INTEGER *> Number of values of the parameter NRHS *> *> line 7: NSVAL, INTEGER array, dimension (NPARMS) *> The values for the number of right hand sides NRHS. *> *> line 8: THRESH *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 9: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 9 was 2: *> *> line 10: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 10-EOF: Lines specifying matrix types, as for SVD. *> The 3-character path name is 'DBB'. *> *>----------------------------------------------------------------------- *> *> DEC input file: *> *> line 2: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> lines 3-EOF: *> *> Input for testing the eigencondition routines consists of a set of *> specially constructed test cases and their solutions. The data *> format is not intended to be modified by the user. *> *>----------------------------------------------------------------------- *> *> DBL and DBK input files: *> *> line 1: 'DBL' in columns 1-3 to test SGEBAL, or 'DBK' in *> columns 1-3 to test SGEBAK. *> *> The remaining lines consist of specially constructed test cases. *> *>----------------------------------------------------------------------- *> *> DGL and DGK input files: *> *> line 1: 'DGL' in columns 1-3 to test DGGBAL, or 'DGK' in *> columns 1-3 to test DGGBAK. *> *> The remaining lines consist of specially constructed test cases. *> *>----------------------------------------------------------------------- *> *> GLM data file: *> *> line 1: 'GLM' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M (row dimension). *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P (row dimension). *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N (column dimension), note M <= N <= M+P. *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GLM' for the generalized *> linear regression model routines. *> *>----------------------------------------------------------------------- *> *> GQR data file: *> *> line 1: 'GQR' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M. *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P. *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N. *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GQR' for the generalized *> QR and RQ routines. *> *>----------------------------------------------------------------------- *> *> GSV data file: *> *> line 1: 'GSV' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M (row dimension). *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P (row dimension). *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N (column dimension). *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GSV' for the generalized *> SVD routines. *> *>----------------------------------------------------------------------- *> *> CSD data file: *> *> line 1: 'CSD' in columns 1 to 3. *> *> line 2: NM, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NM) *> Values of M (row and column dimension of orthogonal matrix). *> *> line 4: PVAL, INTEGER array, dimension(NM) *> Values of P (row dimension of top-left block). *> *> line 5: NVAL, INTEGER array, dimension(NM) *> Values of N (column dimension of top-left block). *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'CSD' for the CSD routine. *> *>----------------------------------------------------------------------- *> *> LSE data file: *> *> line 1: 'LSE' in columns 1 to 3. *> *> line 2: NN, INTEGER *> Number of values of M, P, and N. *> *> line 3: MVAL, INTEGER array, dimension(NN) *> Values of M. *> *> line 4: PVAL, INTEGER array, dimension(NN) *> Values of P. *> *> line 5: NVAL, INTEGER array, dimension(NN) *> Values of N, note P <= N <= P+M. *> *> line 6: THRESH, REAL *> Threshold value for the test ratios. Information will be *> printed about each test for which the test ratio is greater *> than or equal to the threshold. *> *> line 7: TSTERR, LOGICAL *> Flag indicating whether or not to test the error exits for *> the LAPACK routines and driver routines. *> *> line 8: NEWSD, INTEGER *> A code indicating how to set the random number seed. *> = 0: Set the seed to a default value before each run *> = 1: Initialize the seed to a default value only before the *> first run *> = 2: Like 1, but use the seed values on the next line *> *> If line 8 was 2: *> *> line 9: INTEGER array, dimension (4) *> Four integer values for the random number seed. *> *> lines 9-EOF: Lines specifying matrix types, as for NEP. *> The 3-character path name is 'GSV' for the generalized *> SVD routines. *> *>----------------------------------------------------------------------- *> *> NMAX is currently set to 132 and must be at least 12 for some of the *> precomputed examples, and LWORK = NMAX*(5*NMAX+5)+1 in the parameter *> statements below. For SVD, we assume NRHS may be as big as N. The *> parameter NEED is set to 14 to allow for 14 N-by-N matrices for DGG. *> \endverbatim * * Arguments: * ========== * * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_eig * * ===================================================================== PROGRAM DCHKEE * #if defined(_OPENMP) use omp_lib #endif * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * ===================================================================== * * .. Parameters .. INTEGER NMAX PARAMETER ( NMAX = 132 ) INTEGER NCMAX PARAMETER ( NCMAX = 20 ) INTEGER NEED PARAMETER ( NEED = 14 ) INTEGER LWORK PARAMETER ( LWORK = NMAX*( 5*NMAX+5 )+1 ) INTEGER LIWORK PARAMETER ( LIWORK = NMAX*( 5*NMAX+20 ) ) INTEGER MAXIN PARAMETER ( MAXIN = 20 ) INTEGER MAXT PARAMETER ( MAXT = 30 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) * .. * .. Local Scalars .. LOGICAL CSD, DBB, DGG, DSB, FATAL, GLM, GQR, GSV, LSE, $ NEP, DBK, DBL, SEP, DES, DEV, DGK, DGL, DGS, $ DGV, DGX, DSX, SVD, DVX, DXV, TSTCHK, TSTDIF, $ TSTDRV, TSTERR CHARACTER C1 CHARACTER*3 C3, PATH CHARACTER*32 VNAME CHARACTER*10 INTSTR CHARACTER*80 LINE INTEGER I, I1, IC, INFO, ITMP, K, LENP, MAXTYP, NEWSD, $ NK, NN, NPARMS, NRHS, NTYPES, $ VERS_MAJOR, VERS_MINOR, VERS_PATCH, N_THREADS DOUBLE PRECISION EPS, S1, S2, THRESH, THRSHN * .. * .. Local Arrays .. LOGICAL DOTYPE( MAXT ), LOGWRK( NMAX ) INTEGER IOLDSD( 4 ), ISEED( 4 ), IWORK( LIWORK ), $ KVAL( MAXIN ), MVAL( MAXIN ), MXBVAL( MAXIN ), $ NBCOL( MAXIN ), NBMIN( MAXIN ), NBVAL( MAXIN ), $ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ), $ PVAL( MAXIN ) INTEGER INMIN( MAXIN ), INWIN( MAXIN ), INIBL( MAXIN ), $ ISHFTS( MAXIN ), IACC22( MAXIN ) DOUBLE PRECISION D( NMAX, 12 ), RESULT( 500 ), TAUA( NMAX ), $ TAUB( NMAX ), X( 5*NMAX ) * .. * .. Allocatable Arrays .. INTEGER AllocateStatus DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: WORK DOUBLE PRECISION, DIMENSION(:,:), ALLOCATABLE :: A, B, C * .. * .. External Functions .. LOGICAL LSAMEN DOUBLE PRECISION DLAMCH, DSECND EXTERNAL LSAMEN, DLAMCH, DSECND * .. * .. External Subroutines .. EXTERNAL ALAREQ, DCHKBB, DCHKBD, DCHKBK, DCHKBL, DCHKEC, $ DCHKGG, DCHKGK, DCHKGL, DCHKHS, DCHKSB, DCHKST, $ DCKCSD, DCKGLM, DCKGQR, DCKGSV, DCKLSE, DDRGES, $ DDRGEV, DDRGSX, DDRGVX, DDRVBD, DDRVES, DDRVEV, $ DDRVSG, DDRVST, DDRVSX, DDRVVX, DERRBD, $ DERRED, DERRGG, DERRHS, DERRST, ILAVER, XLAENV, $ DDRGES3, DDRGEV3, $ DCHKST2STG, DDRVST2STG, DCHKSB2STG, DDRVSG2STG * .. * .. Intrinsic Functions .. INTRINSIC LEN, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, MAXB, NPROC, NSHIFT, NUNIT, SELDIM, $ SELOPT * .. * .. Arrays in Common .. LOGICAL SELVAL( 20 ) INTEGER IPARMS( 100 ) DOUBLE PRECISION SELWI( 20 ), SELWR( 20 ) * .. * .. Common blocks .. COMMON / CENVIR / NPROC, NSHIFT, MAXB COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT COMMON / SSLCT / SELOPT, SELDIM, SELVAL, SELWR, SELWI COMMON / CLAENV / IPARMS * .. * .. Data statements .. DATA INTSTR / '0123456789' / DATA IOLDSD / 0, 0, 0, 1 / * .. * .. Allocate memory dynamically .. * ALLOCATE ( A(NMAX*NMAX,NEED), STAT = AllocateStatus ) IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" ALLOCATE ( B(NMAX*NMAX,5), STAT = AllocateStatus ) IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" ALLOCATE ( C(NCMAX*NCMAX,NCMAX*NCMAX), STAT = AllocateStatus ) IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" ALLOCATE ( WORK(LWORK), STAT = AllocateStatus ) IF (AllocateStatus /= 0) STOP "*** Not enough memory ***" * .. * .. Executable Statements .. * A = 0.0 B = 0.0 C = 0.0 D = 0.0 S1 = DSECND( ) FATAL = .FALSE. NUNIT = NOUT * * Return to here to read multiple sets of data * 10 CONTINUE * * Read the first line and set the 3-character test path * READ( NIN, FMT = '(A80)', END = 380 )LINE PATH = LINE( 1: 3 ) NEP = LSAMEN( 3, PATH, 'NEP' ) .OR. LSAMEN( 3, PATH, 'DHS' ) SEP = LSAMEN( 3, PATH, 'SEP' ) .OR. LSAMEN( 3, PATH, 'DST' ) .OR. $ LSAMEN( 3, PATH, 'DSG' ) .OR. LSAMEN( 3, PATH, 'SE2' ) SVD = LSAMEN( 3, PATH, 'SVD' ) .OR. LSAMEN( 3, PATH, 'DBD' ) DEV = LSAMEN( 3, PATH, 'DEV' ) DES = LSAMEN( 3, PATH, 'DES' ) DVX = LSAMEN( 3, PATH, 'DVX' ) DSX = LSAMEN( 3, PATH, 'DSX' ) DGG = LSAMEN( 3, PATH, 'DGG' ) DGS = LSAMEN( 3, PATH, 'DGS' ) DGX = LSAMEN( 3, PATH, 'DGX' ) DGV = LSAMEN( 3, PATH, 'DGV' ) DXV = LSAMEN( 3, PATH, 'DXV' ) DSB = LSAMEN( 3, PATH, 'DSB' ) DBB = LSAMEN( 3, PATH, 'DBB' ) GLM = LSAMEN( 3, PATH, 'GLM' ) GQR = LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) GSV = LSAMEN( 3, PATH, 'GSV' ) CSD = LSAMEN( 3, PATH, 'CSD' ) LSE = LSAMEN( 3, PATH, 'LSE' ) DBL = LSAMEN( 3, PATH, 'DBL' ) DBK = LSAMEN( 3, PATH, 'DBK' ) DGL = LSAMEN( 3, PATH, 'DGL' ) DGK = LSAMEN( 3, PATH, 'DGK' ) * * Report values of parameters. * IF( PATH.EQ.' ' ) THEN GO TO 10 ELSE IF( NEP ) THEN WRITE( NOUT, FMT = 9987 ) ELSE IF( SEP ) THEN WRITE( NOUT, FMT = 9986 ) ELSE IF( SVD ) THEN WRITE( NOUT, FMT = 9985 ) ELSE IF( DEV ) THEN WRITE( NOUT, FMT = 9979 ) ELSE IF( DES ) THEN WRITE( NOUT, FMT = 9978 ) ELSE IF( DVX ) THEN WRITE( NOUT, FMT = 9977 ) ELSE IF( DSX ) THEN WRITE( NOUT, FMT = 9976 ) ELSE IF( DGG ) THEN WRITE( NOUT, FMT = 9975 ) ELSE IF( DGS ) THEN WRITE( NOUT, FMT = 9964 ) ELSE IF( DGX ) THEN WRITE( NOUT, FMT = 9965 ) ELSE IF( DGV ) THEN WRITE( NOUT, FMT = 9963 ) ELSE IF( DXV ) THEN WRITE( NOUT, FMT = 9962 ) ELSE IF( DSB ) THEN WRITE( NOUT, FMT = 9974 ) ELSE IF( DBB ) THEN WRITE( NOUT, FMT = 9967 ) ELSE IF( GLM ) THEN WRITE( NOUT, FMT = 9971 ) ELSE IF( GQR ) THEN WRITE( NOUT, FMT = 9970 ) ELSE IF( GSV ) THEN WRITE( NOUT, FMT = 9969 ) ELSE IF( CSD ) THEN WRITE( NOUT, FMT = 9960 ) ELSE IF( LSE ) THEN WRITE( NOUT, FMT = 9968 ) ELSE IF( DBL ) THEN * * DGEBAL: Balancing * CALL DCHKBL( NIN, NOUT ) GO TO 10 ELSE IF( DBK ) THEN * * DGEBAK: Back transformation * CALL DCHKBK( NIN, NOUT ) GO TO 10 ELSE IF( DGL ) THEN * * DGGBAL: Balancing * CALL DCHKGL( NIN, NOUT ) GO TO 10 ELSE IF( DGK ) THEN * * DGGBAK: Back transformation * CALL DCHKGK( NIN, NOUT ) GO TO 10 ELSE IF( LSAMEN( 3, PATH, 'DEC' ) ) THEN * * DEC: Eigencondition estimation * READ( NIN, FMT = * )THRESH CALL XLAENV( 1, 1 ) CALL XLAENV( 12, 11 ) CALL XLAENV( 13, 2 ) CALL XLAENV( 14, 0 ) CALL XLAENV( 15, 2 ) CALL XLAENV( 16, 2 ) TSTERR = .TRUE. CALL DCHKEC( THRESH, TSTERR, NIN, NOUT ) GO TO 10 ELSE WRITE( NOUT, FMT = 9992 )PATH GO TO 10 END IF CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH ) WRITE( NOUT, FMT = 9972 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH WRITE( NOUT, FMT = 9984 ) * * Read the number of values of M, P, and N. * READ( NIN, FMT = * )NN IF( NN.LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NN ', NN, 1 NN = 0 FATAL = .TRUE. ELSE IF( NN.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9988 )' NN ', NN, MAXIN NN = 0 FATAL = .TRUE. END IF * * Read the values of M * IF( .NOT.( DGX .OR. DXV ) ) THEN READ( NIN, FMT = * )( MVAL( I ), I = 1, NN ) IF( SVD ) THEN VNAME = ' M ' ELSE VNAME = ' N ' END IF DO 20 I = 1, NN IF( MVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )VNAME, MVAL( I ), 0 FATAL = .TRUE. ELSE IF( MVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )VNAME, MVAL( I ), NMAX FATAL = .TRUE. END IF 20 CONTINUE WRITE( NOUT, FMT = 9983 )'M: ', ( MVAL( I ), I = 1, NN ) END IF * * Read the values of P * IF( GLM .OR. GQR .OR. GSV .OR. CSD .OR. LSE ) THEN READ( NIN, FMT = * )( PVAL( I ), I = 1, NN ) DO 30 I = 1, NN IF( PVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' P ', PVAL( I ), 0 FATAL = .TRUE. ELSE IF( PVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' P ', PVAL( I ), NMAX FATAL = .TRUE. END IF 30 CONTINUE WRITE( NOUT, FMT = 9983 )'P: ', ( PVAL( I ), I = 1, NN ) END IF * * Read the values of N * IF( SVD .OR. DBB .OR. GLM .OR. GQR .OR. GSV .OR. CSD .OR. $ LSE ) THEN READ( NIN, FMT = * )( NVAL( I ), I = 1, NN ) DO 40 I = 1, NN IF( NVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' N ', NVAL( I ), 0 FATAL = .TRUE. ELSE IF( NVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' N ', NVAL( I ), NMAX FATAL = .TRUE. END IF 40 CONTINUE ELSE DO 50 I = 1, NN NVAL( I ) = MVAL( I ) 50 CONTINUE END IF IF( .NOT.( DGX .OR. DXV ) ) THEN WRITE( NOUT, FMT = 9983 )'N: ', ( NVAL( I ), I = 1, NN ) ELSE WRITE( NOUT, FMT = 9983 )'N: ', NN END IF * * Read the number of values of K, followed by the values of K * IF( DSB .OR. DBB ) THEN READ( NIN, FMT = * )NK READ( NIN, FMT = * )( KVAL( I ), I = 1, NK ) DO 60 I = 1, NK IF( KVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' K ', KVAL( I ), 0 FATAL = .TRUE. ELSE IF( KVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' K ', KVAL( I ), NMAX FATAL = .TRUE. END IF 60 CONTINUE WRITE( NOUT, FMT = 9983 )'K: ', ( KVAL( I ), I = 1, NK ) END IF * IF( DEV .OR. DES .OR. DVX .OR. DSX ) THEN * * For the nonsymmetric QR driver routines, only one set of * parameters is allowed. * READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), $ INMIN( 1 ), INWIN( 1 ), INIBL(1), ISHFTS(1), IACC22(1) IF( NBVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( NBMIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 FATAL = .TRUE. ELSE IF( NXVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( INMIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( 1 ), 1 FATAL = .TRUE. ELSE IF( INWIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( 1 ), 1 FATAL = .TRUE. ELSE IF( INIBL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( 1 ), 1 FATAL = .TRUE. ELSE IF( ISHFTS( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( 1 ), 1 FATAL = .TRUE. ELSE IF( IACC22( 1 ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( 1 ), 0 FATAL = .TRUE. END IF CALL XLAENV( 1, NBVAL( 1 ) ) CALL XLAENV( 2, NBMIN( 1 ) ) CALL XLAENV( 3, NXVAL( 1 ) ) CALL XLAENV(12, MAX( 11, INMIN( 1 ) ) ) CALL XLAENV(13, INWIN( 1 ) ) CALL XLAENV(14, INIBL( 1 ) ) CALL XLAENV(15, ISHFTS( 1 ) ) CALL XLAENV(16, IACC22( 1 ) ) WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) WRITE( NOUT, FMT = 9983 )'INMIN: ', INMIN( 1 ) WRITE( NOUT, FMT = 9983 )'INWIN: ', INWIN( 1 ) WRITE( NOUT, FMT = 9983 )'INIBL: ', INIBL( 1 ) WRITE( NOUT, FMT = 9983 )'ISHFTS: ', ISHFTS( 1 ) WRITE( NOUT, FMT = 9983 )'IACC22: ', IACC22( 1 ) * ELSEIF( DGS .OR. DGX .OR. DGV .OR. DXV ) THEN * * For the nonsymmetric generalized driver routines, only one set * of parameters is allowed. * READ( NIN, FMT = * )NBVAL( 1 ), NBMIN( 1 ), NXVAL( 1 ), $ NSVAL( 1 ), MXBVAL( 1 ) IF( NBVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( NBMIN( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( 1 ), 1 FATAL = .TRUE. ELSE IF( NXVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( 1 ), 1 FATAL = .TRUE. ELSE IF( NSVAL( 1 ).LT.2 ) THEN WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( 1 ), 2 FATAL = .TRUE. ELSE IF( MXBVAL( 1 ).LT.1 ) THEN WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( 1 ), 1 FATAL = .TRUE. END IF CALL XLAENV( 1, NBVAL( 1 ) ) CALL XLAENV( 2, NBMIN( 1 ) ) CALL XLAENV( 3, NXVAL( 1 ) ) CALL XLAENV( 4, NSVAL( 1 ) ) CALL XLAENV( 8, MXBVAL( 1 ) ) WRITE( NOUT, FMT = 9983 )'NB: ', NBVAL( 1 ) WRITE( NOUT, FMT = 9983 )'NBMIN:', NBMIN( 1 ) WRITE( NOUT, FMT = 9983 )'NX: ', NXVAL( 1 ) WRITE( NOUT, FMT = 9983 )'NS: ', NSVAL( 1 ) WRITE( NOUT, FMT = 9983 )'MAXB: ', MXBVAL( 1 ) * ELSE IF( .NOT.DSB .AND. .NOT.GLM .AND. .NOT.GQR .AND. .NOT. $ GSV .AND. .NOT.CSD .AND. .NOT.LSE ) THEN * * For the other paths, the number of parameters can be varied * from the input file. Read the number of parameter values. * READ( NIN, FMT = * )NPARMS IF( NPARMS.LT.1 ) THEN WRITE( NOUT, FMT = 9989 )'NPARMS', NPARMS, 1 NPARMS = 0 FATAL = .TRUE. ELSE IF( NPARMS.GT.MAXIN ) THEN WRITE( NOUT, FMT = 9988 )'NPARMS', NPARMS, MAXIN NPARMS = 0 FATAL = .TRUE. END IF * * Read the values of NB * IF( .NOT.DBB ) THEN READ( NIN, FMT = * )( NBVAL( I ), I = 1, NPARMS ) DO 70 I = 1, NPARMS IF( NBVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NB ', NBVAL( I ), 0 FATAL = .TRUE. ELSE IF( NBVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' NB ', NBVAL( I ), NMAX FATAL = .TRUE. END IF 70 CONTINUE WRITE( NOUT, FMT = 9983 )'NB: ', $ ( NBVAL( I ), I = 1, NPARMS ) END IF * * Read the values of NBMIN * IF( NEP .OR. SEP .OR. SVD .OR. DGG ) THEN READ( NIN, FMT = * )( NBMIN( I ), I = 1, NPARMS ) DO 80 I = 1, NPARMS IF( NBMIN( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )'NBMIN ', NBMIN( I ), 0 FATAL = .TRUE. ELSE IF( NBMIN( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )'NBMIN ', NBMIN( I ), NMAX FATAL = .TRUE. END IF 80 CONTINUE WRITE( NOUT, FMT = 9983 )'NBMIN:', $ ( NBMIN( I ), I = 1, NPARMS ) ELSE DO 90 I = 1, NPARMS NBMIN( I ) = 1 90 CONTINUE END IF * * Read the values of NX * IF( NEP .OR. SEP .OR. SVD ) THEN READ( NIN, FMT = * )( NXVAL( I ), I = 1, NPARMS ) DO 100 I = 1, NPARMS IF( NXVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NX ', NXVAL( I ), 0 FATAL = .TRUE. ELSE IF( NXVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' NX ', NXVAL( I ), NMAX FATAL = .TRUE. END IF 100 CONTINUE WRITE( NOUT, FMT = 9983 )'NX: ', $ ( NXVAL( I ), I = 1, NPARMS ) ELSE DO 110 I = 1, NPARMS NXVAL( I ) = 1 110 CONTINUE END IF * * Read the values of NSHIFT (if DGG) or NRHS (if SVD * or DBB). * IF( SVD .OR. DBB .OR. DGG ) THEN READ( NIN, FMT = * )( NSVAL( I ), I = 1, NPARMS ) DO 120 I = 1, NPARMS IF( NSVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' NS ', NSVAL( I ), 0 FATAL = .TRUE. ELSE IF( NSVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' NS ', NSVAL( I ), NMAX FATAL = .TRUE. END IF 120 CONTINUE WRITE( NOUT, FMT = 9983 )'NS: ', $ ( NSVAL( I ), I = 1, NPARMS ) ELSE DO 130 I = 1, NPARMS NSVAL( I ) = 1 130 CONTINUE END IF * * Read the values for MAXB. * IF( DGG ) THEN READ( NIN, FMT = * )( MXBVAL( I ), I = 1, NPARMS ) DO 140 I = 1, NPARMS IF( MXBVAL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' MAXB ', MXBVAL( I ), 0 FATAL = .TRUE. ELSE IF( MXBVAL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )' MAXB ', MXBVAL( I ), NMAX FATAL = .TRUE. END IF 140 CONTINUE WRITE( NOUT, FMT = 9983 )'MAXB: ', $ ( MXBVAL( I ), I = 1, NPARMS ) ELSE DO 150 I = 1, NPARMS MXBVAL( I ) = 1 150 CONTINUE END IF * * Read the values for INMIN. * IF( NEP ) THEN READ( NIN, FMT = * )( INMIN( I ), I = 1, NPARMS ) DO 540 I = 1, NPARMS IF( INMIN( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' INMIN ', INMIN( I ), 0 FATAL = .TRUE. END IF 540 CONTINUE WRITE( NOUT, FMT = 9983 )'INMIN: ', $ ( INMIN( I ), I = 1, NPARMS ) ELSE DO 550 I = 1, NPARMS INMIN( I ) = 1 550 CONTINUE END IF * * Read the values for INWIN. * IF( NEP ) THEN READ( NIN, FMT = * )( INWIN( I ), I = 1, NPARMS ) DO 560 I = 1, NPARMS IF( INWIN( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' INWIN ', INWIN( I ), 0 FATAL = .TRUE. END IF 560 CONTINUE WRITE( NOUT, FMT = 9983 )'INWIN: ', $ ( INWIN( I ), I = 1, NPARMS ) ELSE DO 570 I = 1, NPARMS INWIN( I ) = 1 570 CONTINUE END IF * * Read the values for INIBL. * IF( NEP ) THEN READ( NIN, FMT = * )( INIBL( I ), I = 1, NPARMS ) DO 580 I = 1, NPARMS IF( INIBL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' INIBL ', INIBL( I ), 0 FATAL = .TRUE. END IF 580 CONTINUE WRITE( NOUT, FMT = 9983 )'INIBL: ', $ ( INIBL( I ), I = 1, NPARMS ) ELSE DO 590 I = 1, NPARMS INIBL( I ) = 1 590 CONTINUE END IF * * Read the values for ISHFTS. * IF( NEP ) THEN READ( NIN, FMT = * )( ISHFTS( I ), I = 1, NPARMS ) DO 600 I = 1, NPARMS IF( ISHFTS( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' ISHFTS ', ISHFTS( I ), 0 FATAL = .TRUE. END IF 600 CONTINUE WRITE( NOUT, FMT = 9983 )'ISHFTS: ', $ ( ISHFTS( I ), I = 1, NPARMS ) ELSE DO 610 I = 1, NPARMS ISHFTS( I ) = 1 610 CONTINUE END IF * * Read the values for IACC22. * IF( NEP .OR. DGG ) THEN READ( NIN, FMT = * )( IACC22( I ), I = 1, NPARMS ) DO 620 I = 1, NPARMS IF( IACC22( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )' IACC22 ', IACC22( I ), 0 FATAL = .TRUE. END IF 620 CONTINUE WRITE( NOUT, FMT = 9983 )'IACC22: ', $ ( IACC22( I ), I = 1, NPARMS ) ELSE DO 630 I = 1, NPARMS IACC22( I ) = 1 630 CONTINUE END IF * * Read the values for NBCOL. * IF( DGG ) THEN READ( NIN, FMT = * )( NBCOL( I ), I = 1, NPARMS ) DO 160 I = 1, NPARMS IF( NBCOL( I ).LT.0 ) THEN WRITE( NOUT, FMT = 9989 )'NBCOL ', NBCOL( I ), 0 FATAL = .TRUE. ELSE IF( NBCOL( I ).GT.NMAX ) THEN WRITE( NOUT, FMT = 9988 )'NBCOL ', NBCOL( I ), NMAX FATAL = .TRUE. END IF 160 CONTINUE WRITE( NOUT, FMT = 9983 )'NBCOL:', $ ( NBCOL( I ), I = 1, NPARMS ) ELSE DO 170 I = 1, NPARMS NBCOL( I ) = 1 170 CONTINUE END IF END IF * * Calculate and print the machine dependent constants. * WRITE( NOUT, FMT = * ) EPS = DLAMCH( 'Underflow threshold' ) WRITE( NOUT, FMT = 9981 )'underflow', EPS EPS = DLAMCH( 'Overflow threshold' ) WRITE( NOUT, FMT = 9981 )'overflow ', EPS EPS = DLAMCH( 'Epsilon' ) WRITE( NOUT, FMT = 9981 )'precision', EPS * * Read the threshold value for the test ratios. * READ( NIN, FMT = * )THRESH WRITE( NOUT, FMT = 9982 )THRESH IF( SEP .OR. SVD .OR. DGG ) THEN * * Read the flag that indicates whether to test LAPACK routines. * READ( NIN, FMT = * )TSTCHK * * Read the flag that indicates whether to test driver routines. * READ( NIN, FMT = * )TSTDRV END IF * * Read the flag that indicates whether to test the error exits. * READ( NIN, FMT = * )TSTERR * * Read the code describing how to set the random number seed. * READ( NIN, FMT = * )NEWSD * * If NEWSD = 2, read another line with 4 integers for the seed. * IF( NEWSD.EQ.2 ) $ READ( NIN, FMT = * )( IOLDSD( I ), I = 1, 4 ) * DO 180 I = 1, 4 ISEED( I ) = IOLDSD( I ) 180 CONTINUE * IF( FATAL ) THEN WRITE( NOUT, FMT = 9999 ) STOP END IF * * Read the input lines indicating the test path and its parameters. * The first three characters indicate the test path, and the number * of test matrix types must be the first nonblank item in columns * 4-80. * 190 CONTINUE * IF( .NOT.( DGX .OR. DXV ) ) THEN * 200 CONTINUE READ( NIN, FMT = '(A80)', END = 380 )LINE C3 = LINE( 1: 3 ) LENP = LEN( LINE ) I = 3 ITMP = 0 I1 = 0 210 CONTINUE I = I + 1 IF( I.GT.LENP ) THEN IF( I1.GT.0 ) THEN GO TO 240 ELSE NTYPES = MAXT GO TO 240 END IF END IF IF( LINE( I: I ).NE.' ' .AND. LINE( I: I ).NE.',' ) THEN I1 = I C1 = LINE( I1: I1 ) * * Check that a valid integer was read * DO 220 K = 1, 10 IF( C1.EQ.INTSTR( K: K ) ) THEN IC = K - 1 GO TO 230 END IF 220 CONTINUE WRITE( NOUT, FMT = 9991 )I, LINE GO TO 200 230 CONTINUE ITMP = 10*ITMP + IC GO TO 210 ELSE IF( I1.GT.0 ) THEN GO TO 240 ELSE GO TO 210 END IF 240 CONTINUE NTYPES = ITMP * * Skip the tests if NTYPES is <= 0. * IF( .NOT.( DEV .OR. DES .OR. DVX .OR. DSX .OR. DGV .OR. $ DGS ) .AND. NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 GO TO 200 END IF * ELSE IF( DXV ) $ C3 = 'DXV' IF( DGX ) $ C3 = 'DGX' END IF * * Reset the random number seed. * IF( NEWSD.EQ.0 ) THEN DO 250 K = 1, 4 ISEED( K ) = IOLDSD( K ) 250 CONTINUE END IF * IF( LSAMEN( 3, C3, 'DHS' ) .OR. LSAMEN( 3, C3, 'NEP' ) ) THEN * * ------------------------------------- * NEP: Nonsymmetric Eigenvalue Problem * ------------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * NS = number of shifts * MAXB = minimum submatrix size * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL DERRHS( 'DHSEQR', NOUT ) DO 270 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) CALL XLAENV(12, MAX( 11, INMIN( I ) ) ) CALL XLAENV(13, INWIN( I ) ) CALL XLAENV(14, INIBL( I ) ) CALL XLAENV(15, ISHFTS( I ) ) CALL XLAENV(16, IACC22( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 260 K = 1, 4 ISEED( K ) = IOLDSD( K ) 260 CONTINUE END IF WRITE( NOUT, FMT = 9961 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ), MAX( 11, INMIN(I)), $ INWIN( I ), INIBL( I ), ISHFTS( I ), IACC22( I ) CALL DCHKHS( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 5 ), NMAX, A( 1, 6 ), $ A( 1, 7 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), $ D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), A( 1, 8 ), $ A( 1, 9 ), A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), $ D( 1, 7 ), WORK, LWORK, IWORK, LOGWRK, RESULT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCHKHS', INFO 270 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'DST' ) .OR. LSAMEN( 3, C3, 'SEP' ) $ .OR. LSAMEN( 3, C3, 'SE2' ) ) THEN * * ---------------------------------- * SEP: Symmetric Eigenvalue Problem * ---------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 1, 1 ) CALL XLAENV( 9, 25 ) IF( TSTERR ) THEN #if defined(_OPENMP) N_THREADS = OMP_GET_NUM_THREADS() CALL OMP_SET_NUM_THREADS(1) #endif CALL DERRST( 'DST', NOUT ) #if defined(_OPENMP) CALL OMP_SET_NUM_THREADS(N_THREADS) #endif END IF DO 290 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 280 K = 1, 4 ISEED( K ) = IOLDSD( K ) 280 CONTINUE END IF WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ) IF( TSTCHK ) THEN IF( LSAMEN( 3, C3, 'SE2' ) ) THEN CALL DCHKST2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) ELSE CALL DCHKST( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), $ D( 1, 10 ), D( 1, 11 ), A( 1, 3 ), NMAX, $ A( 1, 4 ), A( 1, 5 ), D( 1, 12 ), A( 1, 6 ), $ WORK, LWORK, IWORK, LIWORK, RESULT, INFO ) ENDIF IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCHKST', INFO END IF IF( TSTDRV ) THEN IF( LSAMEN( 3, C3, 'SE2' ) ) THEN CALL DDRVST2STG( NN, NVAL, 18, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, $ LWORK, IWORK, LIWORK, RESULT, INFO ) ELSE CALL DDRVST( NN, NVAL, 18, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, D( 1, 3 ), D( 1, 4 ), $ D( 1, 5 ), D( 1, 6 ), D( 1, 8 ), D( 1, 9 ), $ D( 1, 10 ), D( 1, 11 ), A( 1, 2 ), NMAX, $ A( 1, 3 ), D( 1, 12 ), A( 1, 4 ), WORK, $ LWORK, IWORK, LIWORK, RESULT, INFO ) ENDIF IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRVST', INFO END IF 290 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'DSG' ) ) THEN * * ---------------------------------------------- * DSG: Symmetric Generalized Eigenvalue Problem * ---------------------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 9, 25 ) DO 310 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 300 K = 1, 4 ISEED( K ) = IOLDSD( K ) 300 CONTINUE END IF WRITE( NOUT, FMT = 9997 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ) IF( TSTCHK ) THEN * CALL DDRVSG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, * $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, * $ D( 1, 3 ), A( 1, 3 ), NMAX, A( 1, 4 ), * $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), WORK, * $ LWORK, IWORK, LIWORK, RESULT, INFO ) CALL DDRVSG2STG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, $ D( 1, 3 ), D( 1, 3 ), A( 1, 3 ), NMAX, $ A( 1, 4 ), A( 1, 5 ), A( 1, 6 ), $ A( 1, 7 ), WORK, LWORK, IWORK, LIWORK, $ RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRVSG', INFO END IF 310 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'DBD' ) .OR. LSAMEN( 3, C3, 'SVD' ) ) THEN * * ---------------------------------- * SVD: Singular Value Decomposition * ---------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NX = crossover point * NRHS = number of right hand sides * MAXTYP = 16 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 1, 1 ) CALL XLAENV( 9, 25 ) * * Test the error exits * IF( TSTERR .AND. TSTCHK ) $ CALL DERRBD( 'DBD', NOUT ) IF( TSTERR .AND. TSTDRV ) $ CALL DERRED( 'DBD', NOUT ) * DO 330 I = 1, NPARMS NRHS = NSVAL( I ) CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 3, NXVAL( I ) ) IF( NEWSD.EQ.0 ) THEN DO 320 K = 1, 4 ISEED( K ) = IOLDSD( K ) 320 CONTINUE END IF WRITE( NOUT, FMT = 9995 )C3, NBVAL( I ), NBMIN( I ), $ NXVAL( I ), NRHS IF( TSTCHK ) THEN CALL DCHKBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, NRHS, ISEED, $ THRESH, A( 1, 1 ), NMAX, D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 2 ), $ NMAX, A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), NMAX, $ A( 1, 6 ), NMAX, A( 1, 7 ), A( 1, 8 ), WORK, $ LWORK, IWORK, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCHKBD', INFO END IF IF( TSTDRV ) $ CALL DDRVBD( NN, MVAL, NVAL, MAXTYP, DOTYPE, ISEED, $ THRESH, A( 1, 1 ), NMAX, A( 1, 2 ), NMAX, $ A( 1, 3 ), NMAX, A( 1, 4 ), A( 1, 5 ), $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), $ WORK, LWORK, IWORK, NOUT, INFO ) 330 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'DEV' ) ) THEN * * -------------------------------------------- * DEV: Nonsymmetric Eigenvalue Problem Driver * DGEEV (eigenvalues and eigenvectors) * -------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRVEV( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, RESULT, $ WORK, LWORK, IWORK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DGEEV', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'DES' ) ) THEN * * -------------------------------------------- * DES: Nonsymmetric Eigenvalue Problem Driver * DGEES (Schur form) * -------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRVES( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), $ A( 1, 4 ), NMAX, RESULT, WORK, LWORK, IWORK, $ LOGWRK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DGEES', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'DVX' ) ) THEN * * -------------------------------------------------------------- * DVX: Nonsymmetric Eigenvalue Problem Expert Driver * DGEEVX (eigenvalues, eigenvectors and condition numbers) * -------------------------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRVVX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), A( 1, 3 ), $ NMAX, A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, $ D( 1, 5 ), D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), $ D( 1, 9 ), D( 1, 10 ), D( 1, 11 ), D( 1, 12 ), $ RESULT, WORK, LWORK, IWORK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DGEEVX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'DSX' ) ) THEN * * --------------------------------------------------- * DSX: Nonsymmetric Eigenvalue Problem Expert Driver * DGEESX (Schur form and condition numbers) * --------------------------------------------------- * MAXTYP = 21 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRED( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRVSX( NN, NVAL, NTYPES, DOTYPE, ISEED, THRESH, NIN, $ NOUT, A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), $ D( 1, 5 ), D( 1, 6 ), A( 1, 4 ), NMAX, $ A( 1, 5 ), RESULT, WORK, LWORK, IWORK, LOGWRK, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DGEESX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'DGG' ) ) THEN * * ------------------------------------------------- * DGG: Generalized Nonsymmetric Eigenvalue Problem * ------------------------------------------------- * Vary the parameters * NB = block size * NBMIN = minimum block size * NS = number of shifts * MAXB = minimum submatrix size * IACC22: structured matrix multiply * NBCOL = minimum column dimension for blocks * MAXTYP = 26 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV(1,1) IF( TSTCHK .AND. TSTERR ) $ CALL DERRGG( C3, NOUT ) DO 350 I = 1, NPARMS CALL XLAENV( 1, NBVAL( I ) ) CALL XLAENV( 2, NBMIN( I ) ) CALL XLAENV( 4, NSVAL( I ) ) CALL XLAENV( 8, MXBVAL( I ) ) CALL XLAENV( 16, IACC22( I ) ) CALL XLAENV( 5, NBCOL( I ) ) * IF( NEWSD.EQ.0 ) THEN DO 340 K = 1, 4 ISEED( K ) = IOLDSD( K ) 340 CONTINUE END IF WRITE( NOUT, FMT = 9996 )C3, NBVAL( I ), NBMIN( I ), $ NSVAL( I ), MXBVAL( I ), IACC22( I ), NBCOL( I ) TSTDIF = .FALSE. THRSHN = 10.D0 IF( TSTCHK ) THEN CALL DCHKGG( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, $ TSTDIF, THRSHN, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ A( 1, 6 ), A( 1, 7 ), A( 1, 8 ), A( 1, 9 ), $ NMAX, A( 1, 10 ), A( 1, 11 ), A( 1, 12 ), $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), $ D( 1, 5 ), D( 1, 6 ), A( 1, 13 ), $ A( 1, 14 ), WORK, LWORK, LOGWRK, RESULT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCHKGG', INFO END IF 350 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'DGS' ) ) THEN * * ------------------------------------------------- * DGS: Generalized Nonsymmetric Eigenvalue Problem * DGGES (Schur form) * ------------------------------------------------- * MAXTYP = 26 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRGES( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, $ RESULT, LOGWRK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRGES', INFO * * Blocked version * CALL XLAENV(16, 2) CALL DDRGES3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), WORK, LWORK, $ RESULT, LOGWRK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRGES3', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( DGX ) THEN * * ------------------------------------------------- * DGX: Generalized Nonsymmetric Eigenvalue Problem * DGGESX (Schur form and condition numbers) * ------------------------------------------------- * MAXTYP = 5 NTYPES = MAXTYP IF( NN.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL XLAENV( 5, 2 ) CALL DDRGSX( NN, NCMAX, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ), $ A( 1, 6 ), D( 1, 1 ), D( 1, 2 ), D( 1, 3 ), $ C( 1, 1 ), NCMAX*NCMAX, A( 1, 12 ), WORK, $ LWORK, IWORK, LIWORK, LOGWRK, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRGSX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'DGV' ) ) THEN * * ------------------------------------------------- * DGV: Generalized Nonsymmetric Eigenvalue Problem * DGGEV (Eigenvalue/vector form) * ------------------------------------------------- * MAXTYP = 26 NTYPES = MIN( MAXTYP, NTYPES ) IF( NTYPES.LE.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRGEV( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), $ WORK, LWORK, RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRGEV', INFO * * Blocked version * CALL DDRGEV3( NN, NVAL, MAXTYP, DOTYPE, ISEED, THRESH, NOUT, $ A( 1, 1 ), NMAX, A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), A( 1, 7 ), NMAX, A( 1, 8 ), $ A( 1, 9 ), NMAX, D( 1, 1 ), D( 1, 2 ), $ D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), D( 1, 6 ), $ WORK, LWORK, RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRGEV3', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( DXV ) THEN * * ------------------------------------------------- * DXV: Generalized Nonsymmetric Eigenvalue Problem * DGGEVX (eigenvalue/vector with condition numbers) * ------------------------------------------------- * MAXTYP = 2 NTYPES = MAXTYP IF( NN.LT.0 ) THEN WRITE( NOUT, FMT = 9990 )C3 ELSE IF( TSTERR ) $ CALL DERRGG( C3, NOUT ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) CALL DDRGVX( NN, THRESH, NIN, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), A( 1, 5 ), A( 1, 6 ), $ IWORK( 1 ), IWORK( 2 ), D( 1, 4 ), D( 1, 5 ), $ D( 1, 6 ), D( 1, 7 ), D( 1, 8 ), D( 1, 9 ), $ WORK, LWORK, IWORK( 3 ), LIWORK-2, RESULT, $ LOGWRK, INFO ) * IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DDRGVX', INFO END IF WRITE( NOUT, FMT = 9973 ) GO TO 10 * ELSE IF( LSAMEN( 3, C3, 'DSB' ) ) THEN * * ------------------------------ * DSB: Symmetric Band Reduction * ------------------------------ * MAXTYP = 15 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) IF( TSTERR ) $ CALL DERRST( 'DSB', NOUT ) * CALL DCHKSB( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, THRESH, * $ NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), D( 1, 2 ), * $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) CALL DCHKSB2STG( NN, NVAL, NK, KVAL, MAXTYP, DOTYPE, ISEED, $ THRESH, NOUT, A( 1, 1 ), NMAX, D( 1, 1 ), $ D( 1, 2 ), D( 1, 3 ), D( 1, 4 ), D( 1, 5 ), $ A( 1, 2 ), NMAX, WORK, LWORK, RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCHKSB', INFO * ELSE IF( LSAMEN( 3, C3, 'DBB' ) ) THEN * * ------------------------------ * DBB: General Band Reduction * ------------------------------ * MAXTYP = 15 NTYPES = MIN( MAXTYP, NTYPES ) CALL ALAREQ( C3, NTYPES, DOTYPE, MAXTYP, NIN, NOUT ) DO 370 I = 1, NPARMS NRHS = NSVAL( I ) * IF( NEWSD.EQ.0 ) THEN DO 360 K = 1, 4 ISEED( K ) = IOLDSD( K ) 360 CONTINUE END IF WRITE( NOUT, FMT = 9966 )C3, NRHS CALL DCHKBB( NN, MVAL, NVAL, NK, KVAL, MAXTYP, DOTYPE, NRHS, $ ISEED, THRESH, NOUT, A( 1, 1 ), NMAX, $ A( 1, 2 ), 2*NMAX, D( 1, 1 ), D( 1, 2 ), $ A( 1, 4 ), NMAX, A( 1, 5 ), NMAX, A( 1, 6 ), $ NMAX, A( 1, 7 ), WORK, LWORK, RESULT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCHKBB', INFO 370 CONTINUE * ELSE IF( LSAMEN( 3, C3, 'GLM' ) ) THEN * * ----------------------------------------- * GLM: Generalized Linear Regression Model * ----------------------------------------- * CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL DERRGG( 'GLM', NOUT ) CALL DCKGLM( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCKGLM', INFO * ELSE IF( LSAMEN( 3, C3, 'GQR' ) ) THEN * * ------------------------------------------ * GQR: Generalized QR and RQ factorizations * ------------------------------------------ * CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL DERRGG( 'GQR', NOUT ) CALL DCKGQR( NN, MVAL, NN, PVAL, NN, NVAL, NTYPES, ISEED, $ THRESH, NMAX, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), $ A( 1, 4 ), TAUA, B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), $ B( 1, 4 ), B( 1, 5 ), TAUB, WORK, D( 1, 1 ), NIN, $ NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCKGQR', INFO * ELSE IF( LSAMEN( 3, C3, 'GSV' ) ) THEN * * ---------------------------------------------- * GSV: Generalized Singular Value Decomposition * ---------------------------------------------- * CALL XLAENV(1,1) IF( TSTERR ) $ CALL DERRGG( 'GSV', NOUT ) CALL DCKGSV( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), $ A( 1, 3 ), B( 1, 3 ), A( 1, 4 ), TAUA, TAUB, $ B( 1, 4 ), IWORK, WORK, D( 1, 1 ), NIN, NOUT, $ INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCKGSV', INFO * ELSE IF( LSAMEN( 3, C3, 'CSD' ) ) THEN * * ---------------------------------------------- * CSD: CS Decomposition * ---------------------------------------------- * CALL XLAENV(1,1) IF( TSTERR ) $ CALL DERRGG( 'CSD', NOUT ) CALL DCKCSD( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), $ A( 1, 5 ), A( 1, 6 ), A( 1, 7 ), IWORK, WORK, $ D( 1, 1 ), NIN, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCKCSD', INFO * ELSE IF( LSAMEN( 3, C3, 'LSE' ) ) THEN * * -------------------------------------- * LSE: Constrained Linear Least Squares * -------------------------------------- * CALL XLAENV( 1, 1 ) IF( TSTERR ) $ CALL DERRGG( 'LSE', NOUT ) CALL DCKLSE( NN, MVAL, PVAL, NVAL, NTYPES, ISEED, THRESH, NMAX, $ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), X, $ WORK, D( 1, 1 ), NIN, NOUT, INFO ) IF( INFO.NE.0 ) $ WRITE( NOUT, FMT = 9980 )'DCKLSE', INFO * ELSE WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = * ) WRITE( NOUT, FMT = 9992 )C3 END IF IF( .NOT.( DGX .OR. DXV ) ) $ GO TO 190 380 CONTINUE WRITE( NOUT, FMT = 9994 ) S2 = DSECND( ) WRITE( NOUT, FMT = 9993 )S2 - S1 * DEALLOCATE (A, STAT = AllocateStatus) DEALLOCATE (B, STAT = AllocateStatus) DEALLOCATE (C, STAT = AllocateStatus) DEALLOCATE (WORK, STAT = AllocateStatus) * 9999 FORMAT( / ' Execution not attempted due to input errors' ) 9997 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4 ) 9996 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NS =', I4, $ ', MAXB =', I4, ', IACC22 =', I4, ', NBCOL =', I4 ) 9995 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, $ ', NRHS =', I4 ) 9994 FORMAT( / / ' End of tests' ) 9993 FORMAT( ' Total time used = ', F12.2, ' seconds', / ) 9992 FORMAT( 1X, A3, ': Unrecognized path name' ) 9991 FORMAT( / / ' *** Invalid integer value in column ', I2, $ ' of input', ' line:', / A79 ) 9990 FORMAT( / / 1X, A3, ' routines were not tested' ) 9989 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be >=', $ I6 ) 9988 FORMAT( ' Invalid input value: ', A, '=', I6, '; must be <=', $ I6 ) 9987 FORMAT( ' Tests of the Nonsymmetric Eigenvalue Problem routines' ) 9986 FORMAT( ' Tests of the Symmetric Eigenvalue Problem routines' ) 9985 FORMAT( ' Tests of the Singular Value Decomposition routines' ) 9984 FORMAT( / ' The following parameter values will be used:' ) 9983 FORMAT( 4X, A, 10I6, / 10X, 10I6 ) 9982 FORMAT( / ' Routines pass computational tests if test ratio is ', $ 'less than', F8.2, / ) 9981 FORMAT( ' Relative machine ', A, ' is taken to be', D16.6 ) 9980 FORMAT( ' *** Error code from ', A, ' = ', I4 ) 9979 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', $ / ' DGEEV (eigenvalues and eigevectors)' ) 9978 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Driver', $ / ' DGEES (Schur form)' ) 9977 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', $ ' Driver', / ' DGEEVX (eigenvalues, eigenvectors and', $ ' condition numbers)' ) 9976 FORMAT( / ' Tests of the Nonsymmetric Eigenvalue Problem Expert', $ ' Driver', / ' DGEESX (Schur form and condition', $ ' numbers)' ) 9975 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem routines' ) 9974 FORMAT( ' Tests of DSBTRD', / ' (reduction of a symmetric band ', $ 'matrix to tridiagonal form)' ) 9973 FORMAT( / 1X, 71( '-' ) ) 9972 FORMAT( / ' LAPACK VERSION ', I1, '.', I1, '.', I1 ) 9971 FORMAT( / ' Tests of the Generalized Linear Regression Model ', $ 'routines' ) 9970 FORMAT( / ' Tests of the Generalized QR and RQ routines' ) 9969 FORMAT( / ' Tests of the Generalized Singular Value', $ ' Decomposition routines' ) 9968 FORMAT( / ' Tests of the Linear Least Squares routines' ) 9967 FORMAT( ' Tests of DGBBRD', / ' (reduction of a general band ', $ 'matrix to real bidiagonal form)' ) 9966 FORMAT( / / 1X, A3, ': NRHS =', I4 ) 9965 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Expert Driver DGGESX' ) 9964 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Driver DGGES' ) 9963 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Driver DGGEV' ) 9962 FORMAT( / ' Tests of the Generalized Nonsymmetric Eigenvalue ', $ 'Problem Expert Driver DGGEVX' ) 9961 FORMAT( / / 1X, A3, ': NB =', I4, ', NBMIN =', I4, ', NX =', I4, $ ', INMIN=', I4, $ ', INWIN =', I4, ', INIBL =', I4, ', ISHFTS =', I4, $ ', IACC22 =', I4) 9960 FORMAT( / ' Tests of the CS Decomposition routines' ) * * End of DCHKEE * END