*> \brief \b ZCHKHS * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, * NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1, * W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU, * WORK, NWORK, RWORK, IWORK, SELECT, RESULT, * INFO ) * * .. Scalar Arguments .. * INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ), SELECT( * ) * INTEGER ISEED( 4 ), IWORK( * ), NN( * ) * DOUBLE PRECISION RESULT( 14 ), RWORK( * ) * COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ), * $ EVECTR( LDU, * ), EVECTX( LDU, * ), * $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ), * $ T2( LDA, * ), TAU( * ), U( LDU, * ), * $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ), * $ WORK( * ), Z( LDU, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKHS checks the nonsymmetric eigenvalue problem routines. *> *> ZGEHRD factors A as U H U' , where ' means conjugate *> transpose, H is hessenberg, and U is unitary. *> *> ZUNGHR generates the unitary matrix U. *> *> ZUNMHR multiplies a matrix by the unitary matrix U. *> *> ZHSEQR factors H as Z T Z' , where Z is unitary and T *> is upper triangular. It also computes the eigenvalues, *> w(1), ..., w(n); we define a diagonal matrix W whose *> (diagonal) entries are the eigenvalues. *> *> ZTREVC computes the left eigenvector matrix L and the *> right eigenvector matrix R for the matrix T. The *> columns of L are the complex conjugates of the left *> eigenvectors of T. The columns of R are the right *> eigenvectors of T. L is lower triangular, and R is *> upper triangular. *> *> ZHSEIN computes the left eigenvector matrix Y and the *> right eigenvector matrix X for the matrix H. The *> columns of Y are the complex conjugates of the left *> eigenvectors of H. The columns of X are the right *> eigenvectors of H. Y is lower triangular, and X is *> upper triangular. *> *> When ZCHKHS is called, a number of matrix "sizes" ("n's") and a *> number of matrix "types" are specified. For each size ("n") *> and each type of matrix, one matrix will be generated and used *> to test the nonsymmetric eigenroutines. For each matrix, 14 *> tests will be performed: *> *> (1) | A - U H U**H | / ( |A| n ulp ) *> *> (2) | I - UU**H | / ( n ulp ) *> *> (3) | H - Z T Z**H | / ( |H| n ulp ) *> *> (4) | I - ZZ**H | / ( n ulp ) *> *> (5) | A - UZ H (UZ)**H | / ( |A| n ulp ) *> *> (6) | I - UZ (UZ)**H | / ( n ulp ) *> *> (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) *> *> (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) *> *> (9) | TR - RW | / ( |T| |R| ulp ) *> *> (10) | L**H T - W**H L | / ( |T| |L| ulp ) *> *> (11) | HX - XW | / ( |H| |X| ulp ) *> *> (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) *> *> (13) | AX - XW | / ( |A| |X| ulp ) *> *> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) *> *> The "sizes" are specified by an array NN(1:NSIZES); the value of *> each element NN(j) specifies one size. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. *> Currently, the list of possible types is: *> *> (1) The zero matrix. *> (2) The identity matrix. *> (3) A (transposed) Jordan block, with 1's on the diagonal. *> *> (4) A diagonal matrix with evenly spaced entries *> 1, ..., ULP and random complex angles. *> (ULP = (first number larger than 1) - 1 ) *> (5) A diagonal matrix with geometrically spaced entries *> 1, ..., ULP and random complex angles. *> (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP *> and random complex angles. *> *> (7) Same as (4), but multiplied by SQRT( overflow threshold ) *> (8) Same as (4), but multiplied by SQRT( underflow threshold ) *> *> (9) A matrix of the form U' T U, where U is unitary and *> T has evenly spaced entries 1, ..., ULP with random complex *> angles on the diagonal and random O(1) entries in the upper *> triangle. *> *> (10) A matrix of the form U' T U, where U is unitary and *> T has geometrically spaced entries 1, ..., ULP with random *> complex angles on the diagonal and random O(1) entries in *> the upper triangle. *> *> (11) A matrix of the form U' T U, where U is unitary and *> T has "clustered" entries 1, ULP,..., ULP with random *> complex angles on the diagonal and random O(1) entries in *> the upper triangle. *> *> (12) A matrix of the form U' T U, where U is unitary and *> T has complex eigenvalues randomly chosen from *> ULP < |z| < 1 and random O(1) entries in the upper *> triangle. *> *> (13) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP *> with random complex angles on the diagonal and random O(1) *> entries in the upper triangle. *> *> (14) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has geometrically spaced entries *> 1, ..., ULP with random complex angles on the diagonal *> and random O(1) entries in the upper triangle. *> *> (15) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP *> with random complex angles on the diagonal and random O(1) *> entries in the upper triangle. *> *> (16) A matrix of the form X' T X, where X has condition *> SQRT( ULP ) and T has complex eigenvalues randomly chosen *> from ULP < |z| < 1 and random O(1) entries in the upper *> triangle. *> *> (17) Same as (16), but multiplied by SQRT( overflow threshold ) *> (18) Same as (16), but multiplied by SQRT( underflow threshold ) *> *> (19) Nonsymmetric matrix with random entries chosen from |z| < 1 *> (20) Same as (19), but multiplied by SQRT( overflow threshold ) *> (21) Same as (19), but multiplied by SQRT( underflow threshold ) *> \endverbatim * * Arguments: * ========== * *> \verbatim *> NSIZES - INTEGER *> The number of sizes of matrices to use. If it is zero, *> ZCHKHS does nothing. It must be at least zero. *> Not modified. *> *> NN - INTEGER array, dimension (NSIZES) *> An array containing the sizes to be used for the matrices. *> Zero values will be skipped. The values must be at least *> zero. *> Not modified. *> *> NTYPES - INTEGER *> The number of elements in DOTYPE. If it is zero, ZCHKHS *> does nothing. It must be at least zero. If it is MAXTYP+1 *> and NSIZES is 1, then an additional type, MAXTYP+1 is *> defined, which is to use whatever matrix is in A. This *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and *> DOTYPE(MAXTYP+1) is .TRUE. . *> Not modified. *> *> DOTYPE - LOGICAL array, dimension (NTYPES) *> If DOTYPE(j) is .TRUE., then for each size in NN a *> matrix of that size and of type j will be generated. *> If NTYPES is smaller than the maximum number of types *> defined (PARAMETER MAXTYP), then types NTYPES+1 through *> MAXTYP will not be generated. If NTYPES is larger *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) *> will be ignored. *> Not modified. *> *> ISEED - INTEGER array, dimension (4) *> On entry ISEED specifies the seed of the random number *> generator. The array elements should be between 0 and 4095; *> if not they will be reduced mod 4096. Also, ISEED(4) must *> be odd. The random number generator uses a linear *> congruential sequence limited to small integers, and so *> should produce machine independent random numbers. The *> values of ISEED are changed on exit, and can be used in the *> next call to ZCHKHS to continue the same random number *> sequence. *> Modified. *> *> THRESH - DOUBLE PRECISION *> A test will count as "failed" if the "error", computed as *> described above, exceeds THRESH. Note that the error *> is scaled to be O(1), so THRESH should be a reasonably *> small multiple of 1, e.g., 10 or 100. In particular, *> it should not depend on the precision (single vs. double) *> or the size of the matrix. It must be at least zero. *> Not modified. *> *> NOUNIT - INTEGER *> The FORTRAN unit number for printing out error messages *> (e.g., if a routine returns IINFO not equal to 0.) *> Not modified. *> *> A - COMPLEX*16 array, dimension (LDA,max(NN)) *> Used to hold the matrix whose eigenvalues are to be *> computed. On exit, A contains the last matrix actually *> used. *> Modified. *> *> LDA - INTEGER *> The leading dimension of A, H, T1 and T2. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> H - COMPLEX*16 array, dimension (LDA,max(NN)) *> The upper hessenberg matrix computed by ZGEHRD. On exit, *> H contains the Hessenberg form of the matrix in A. *> Modified. *> *> T1 - COMPLEX*16 array, dimension (LDA,max(NN)) *> The Schur (="quasi-triangular") matrix computed by ZHSEQR *> if Z is computed. On exit, T1 contains the Schur form of *> the matrix in A. *> Modified. *> *> T2 - COMPLEX*16 array, dimension (LDA,max(NN)) *> The Schur matrix computed by ZHSEQR when Z is not computed. *> This should be identical to T1. *> Modified. *> *> LDU - INTEGER *> The leading dimension of U, Z, UZ and UU. It must be at *> least 1 and at least max( NN ). *> Not modified. *> *> U - COMPLEX*16 array, dimension (LDU,max(NN)) *> The unitary matrix computed by ZGEHRD. *> Modified. *> *> Z - COMPLEX*16 array, dimension (LDU,max(NN)) *> The unitary matrix computed by ZHSEQR. *> Modified. *> *> UZ - COMPLEX*16 array, dimension (LDU,max(NN)) *> The product of U times Z. *> Modified. *> *> W1 - COMPLEX*16 array, dimension (max(NN)) *> The eigenvalues of A, as computed by a full Schur *> decomposition H = Z T Z'. On exit, W1 contains the *> eigenvalues of the matrix in A. *> Modified. *> *> W3 - COMPLEX*16 array, dimension (max(NN)) *> The eigenvalues of A, as computed by a partial Schur *> decomposition (Z not computed, T only computed as much *> as is necessary for determining eigenvalues). On exit, *> W3 contains the eigenvalues of the matrix in A, possibly *> perturbed by ZHSEIN. *> Modified. *> *> EVECTL - COMPLEX*16 array, dimension (LDU,max(NN)) *> The conjugate transpose of the (upper triangular) left *> eigenvector matrix for the matrix in T1. *> Modified. *> *> EVEZTR - COMPLEX*16 array, dimension (LDU,max(NN)) *> The (upper triangular) right eigenvector matrix for the *> matrix in T1. *> Modified. *> *> EVECTY - COMPLEX*16 array, dimension (LDU,max(NN)) *> The conjugate transpose of the left eigenvector matrix *> for the matrix in H. *> Modified. *> *> EVECTX - COMPLEX*16 array, dimension (LDU,max(NN)) *> The right eigenvector matrix for the matrix in H. *> Modified. *> *> UU - COMPLEX*16 array, dimension (LDU,max(NN)) *> Details of the unitary matrix computed by ZGEHRD. *> Modified. *> *> TAU - COMPLEX*16 array, dimension (max(NN)) *> Further details of the unitary matrix computed by ZGEHRD. *> Modified. *> *> WORK - COMPLEX*16 array, dimension (NWORK) *> Workspace. *> Modified. *> *> NWORK - INTEGER *> The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. *> *> RWORK - DOUBLE PRECISION array, dimension (max(NN)) *> Workspace. Could be equivalenced to IWORK, but not SELECT. *> Modified. *> *> IWORK - INTEGER array, dimension (max(NN)) *> Workspace. *> Modified. *> *> SELECT - LOGICAL array, dimension (max(NN)) *> Workspace. Could be equivalenced to IWORK, but not RWORK. *> Modified. *> *> RESULT - DOUBLE PRECISION array, dimension (14) *> The values computed by the fourteen tests described above. *> The values are currently limited to 1/ulp, to avoid *> overflow. *> Modified. *> *> INFO - INTEGER *> If 0, then everything ran OK. *> -1: NSIZES < 0 *> -2: Some NN(j) < 0 *> -3: NTYPES < 0 *> -6: THRESH < 0 *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). *> -14: LDU < 1 or LDU < NMAX. *> -26: NWORK too small. *> If ZLATMR, CLATMS, or CLATME returns an error code, the *> absolute value of it is returned. *> If 1, then ZHSEQR could not find all the shifts. *> If 2, then the EISPACK code (for small blocks) failed. *> If >2, then 30*N iterations were not enough to find an *> eigenvalue or to decompose the problem. *> Modified. *> *>----------------------------------------------------------------------- *> *> Some Local Variables and Parameters: *> ---- ----- --------- --- ---------- *> *> ZERO, ONE Real 0 and 1. *> MAXTYP The number of types defined. *> MTEST The number of tests defined: care must be taken *> that (1) the size of RESULT, (2) the number of *> tests actually performed, and (3) MTEST agree. *> NTEST The number of tests performed on this matrix *> so far. This should be less than MTEST, and *> equal to it by the last test. It will be less *> if any of the routines being tested indicates *> that it could not compute the matrices that *> would be tested. *> NMAX Largest value in NN. *> NMATS The number of matrices generated so far. *> NERRS The number of tests which have exceeded THRESH *> so far (computed by DLAFTS). *> COND, CONDS, *> IMODE Values to be passed to the matrix generators. *> ANORM Norm of A; passed to matrix generators. *> *> OVFL, UNFL Overflow and underflow thresholds. *> ULP, ULPINV Finest relative precision and its inverse. *> RTOVFL, RTUNFL, *> RTULP, RTULPI Square roots of the previous 4 values. *> *> The following four arrays decode JTYPE: *> KTYPE(j) The general type (1-10) for type "j". *> KMODE(j) The MODE value to be passed to the matrix *> generator for type "j". *> KMAGN(j) The order of magnitude ( O(1), *> O(overflow^(1/2) ), O(underflow^(1/2) ) *> KCONDS(j) Selects whether CONDS is to be 1 or *> 1/sqrt(ulp). (0 means irrelevant.) *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH, $ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, W1, $ W3, EVECTL, EVECTR, EVECTY, EVECTX, UU, TAU, $ WORK, NWORK, RWORK, IWORK, SELECT, RESULT, $ INFO ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ), SELECT( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) DOUBLE PRECISION RESULT( 14 ), RWORK( * ) COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ), $ EVECTR( LDU, * ), EVECTX( LDU, * ), $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ), $ T2( LDA, * ), TAU( * ), U( LDU, * ), $ UU( LDU, * ), UZ( LDU, * ), W1( * ), W3( * ), $ WORK( * ), Z( LDU, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN, MATCH INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL, $ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS, $ NMATS, NMAX, NTEST, NTESTT DOUBLE PRECISION ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP, $ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) DOUBLE PRECISION DUMMA( 4 ) COMPLEX*16 CDUMMA( 4 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZCOPY, ZGEHRD, $ ZGEMM, ZGET10, ZGET22, ZHSEIN, ZHSEQR, ZHST01, $ ZLACPY, ZLASET, ZLATME, ZLATMR, ZLATMS, ZTREVC, $ ZUNGHR, ZUNMHR * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 / DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2, $ 3, 1, 2, 3 / DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3, $ 1, 5, 5, 5, 4, 3, 1 / DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 / * .. * .. Executable Statements .. * * Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN INFO = -14 ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN INFO = -26 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZCHKHS', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More important constants * UNFL = DLAMCH( 'Safe minimum' ) OVFL = DLAMCH( 'Overflow' ) CALL DLABAD( UNFL, OVFL ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) RTULP = SQRT( ULP ) RTULPI = ONE / RTULP * * Loop over sizes, types * NERRS = 0 NMATS = 0 * DO 260 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( N.EQ.0 ) $ GO TO 260 N1 = MAX( 1, N ) ANINV = ONE / DBLE( N1 ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 250 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 250 NMATS = NMATS + 1 NTEST = 0 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Initialize RESULT * DO 30 J = 1, 14 RESULT( J ) = ZERO 30 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KCONDS KMODE KTYPE * =1 O(1) 1 clustered 1 zero * =2 large large clustered 2 identity * =3 small exponential Jordan * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log hermitian, w/ eigenvalues * =6 random general, w/ eigenvalues * =7 random diagonal * =8 random hermitian * =9 random general * =10 random triangular * IF( MTYPES.GT.MAXTYP ) $ GO TO 100 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices * IF( ITYPE.EQ.1 ) THEN * * Zero * IINFO = 0 ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Jordan Block * DO 90 JCOL = 1, N A( JCOL, JCOL ) = ANORM IF( JCOL.GT.1 ) $ A( JCOL, JCOL-1 ) = ONE 90 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, IMODE, COND, $ CONE, 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Hermitian, eigenvalues specified * CALL ZLATMS( N, N, 'D', ISEED, 'H', RWORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK, IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * General, eigenvalues specified * IF( KCONDS( JTYPE ).EQ.1 ) THEN CONDS = ONE ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN CONDS = RTULPI ELSE CONDS = ZERO END IF * CALL ZLATME( N, 'D', ISEED, WORK, IMODE, COND, CONE, $ 'T', 'T', 'T', RWORK, 4, CONDS, N, N, ANORM, $ A, LDA, WORK( N+1 ), IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Hermitian, random eigenvalues * CALL ZLATMR( N, N, 'D', ISEED, 'H', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * General, random eigenvalues * CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.10 ) THEN * * Triangular, random eigenvalues * CALL ZLATMR( N, N, 'D', ISEED, 'N', WORK, 6, ONE, CONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 100 CONTINUE * * Call ZGEHRD to compute H and U, do tests. * CALL ZLACPY( ' ', N, N, A, LDA, H, LDA ) NTEST = 1 * ILO = 1 IHI = N * CALL ZGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ), $ NWORK-N, IINFO ) * IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9999 )'ZGEHRD', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * DO 120 J = 1, N - 1 UU( J+1, J ) = CZERO DO 110 I = J + 2, N U( I, J ) = H( I, J ) UU( I, J ) = H( I, J ) H( I, J ) = CZERO 110 CONTINUE 120 CONTINUE CALL ZCOPY( N-1, WORK, 1, TAU, 1 ) CALL ZUNGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ), $ NWORK-N, IINFO ) NTEST = 2 * CALL ZHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK, $ NWORK, RWORK, RESULT( 1 ) ) * * Call ZHSEQR to compute T1, T2 and Z, do tests. * * Eigenvalues only (W3) * CALL ZLACPY( ' ', N, N, H, LDA, T2, LDA ) NTEST = 3 RESULT( 3 ) = ULPINV * CALL ZHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, W3, UZ, LDU, $ WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHSEQR(E)', IINFO, N, JTYPE, $ IOLDSD IF( IINFO.LE.N+2 ) THEN INFO = ABS( IINFO ) GO TO 240 END IF END IF * * Eigenvalues (W1) and Full Schur Form (T2) * CALL ZLACPY( ' ', N, N, H, LDA, T2, LDA ) * CALL ZHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, W1, UZ, LDU, $ WORK, NWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHSEQR(S)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * * Eigenvalues (W1), Schur Form (T1), and Schur Vectors (UZ) * CALL ZLACPY( ' ', N, N, H, LDA, T1, LDA ) CALL ZLACPY( ' ', N, N, U, LDU, UZ, LDU ) * CALL ZHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, W1, UZ, LDU, $ WORK, NWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHSEQR(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * * Compute Z = U' UZ * CALL ZGEMM( 'C', 'N', N, N, N, CONE, U, LDU, UZ, LDU, CZERO, $ Z, LDU ) NTEST = 8 * * Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) * and 4: | I - Z Z' | / ( n ulp ) * CALL ZHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK, $ NWORK, RWORK, RESULT( 3 ) ) * * Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) * and 6: | I - UZ (UZ)' | / ( n ulp ) * CALL ZHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK, $ NWORK, RWORK, RESULT( 5 ) ) * * Do Test 7: | T2 - T1 | / ( |T| n ulp ) * CALL ZGET10( N, N, T2, LDA, T1, LDA, WORK, RWORK, $ RESULT( 7 ) ) * * Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) * TEMP1 = ZERO TEMP2 = ZERO DO 130 J = 1, N TEMP1 = MAX( TEMP1, ABS( W1( J ) ), ABS( W3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( W1( J )-W3( J ) ) ) 130 CONTINUE * RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) * * Compute the Left and Right Eigenvectors of T * * Compute the Right eigenvector Matrix: * NTEST = 9 RESULT( 9 ) = ULPINV * * Select every other eigenvector * DO 140 J = 1, N SELECT( J ) = .FALSE. 140 CONTINUE DO 150 J = 1, N, 2 SELECT( J ) = .TRUE. 150 CONTINUE CALL ZTREVC( 'Right', 'All', SELECT, N, T1, LDA, CDUMMA, $ LDU, EVECTR, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTREVC(R,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * * Test 9: | TR - RW | / ( |T| |R| ulp ) * CALL ZGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, W1, $ WORK, RWORK, DUMMA( 1 ) ) RESULT( 9 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTREVC', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * Compute selected right eigenvectors and confirm that * they agree with previous right eigenvectors * CALL ZTREVC( 'Right', 'Some', SELECT, N, T1, LDA, CDUMMA, $ LDU, EVECTL, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTREVC(R,S)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * K = 1 MATCH = .TRUE. DO 170 J = 1, N IF( SELECT( J ) ) THEN DO 160 JJ = 1, N IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN MATCH = .FALSE. GO TO 180 END IF 160 CONTINUE K = K + 1 END IF 170 CONTINUE 180 CONTINUE IF( .NOT.MATCH ) $ WRITE( NOUNIT, FMT = 9997 )'Right', 'ZTREVC', N, JTYPE, $ IOLDSD * * Compute the Left eigenvector Matrix: * NTEST = 10 RESULT( 10 ) = ULPINV CALL ZTREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU, $ CDUMMA, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTREVC(L,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * * Test 10: | LT - WL | / ( |T| |L| ulp ) * CALL ZGET22( 'C', 'N', 'C', N, T1, LDA, EVECTL, LDU, W1, $ WORK, RWORK, DUMMA( 3 ) ) RESULT( 10 ) = DUMMA( 3 ) IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTREVC', DUMMA( 4 ), $ N, JTYPE, IOLDSD END IF * * Compute selected left eigenvectors and confirm that * they agree with previous left eigenvectors * CALL ZTREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR, $ LDU, CDUMMA, LDU, N, IN, WORK, RWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZTREVC(L,S)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 240 END IF * K = 1 MATCH = .TRUE. DO 200 J = 1, N IF( SELECT( J ) ) THEN DO 190 JJ = 1, N IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN MATCH = .FALSE. GO TO 210 END IF 190 CONTINUE K = K + 1 END IF 200 CONTINUE 210 CONTINUE IF( .NOT.MATCH ) $ WRITE( NOUNIT, FMT = 9997 )'Left', 'ZTREVC', N, JTYPE, $ IOLDSD * * Call ZHSEIN for Right eigenvectors of H, do test 11 * NTEST = 11 RESULT( 11 ) = ULPINV DO 220 J = 1, N SELECT( J ) = .TRUE. 220 CONTINUE * CALL ZHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3, $ CDUMMA, LDU, EVECTX, LDU, N1, IN, WORK, RWORK, $ IWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHSEIN(R)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 240 ELSE * * Test 11: | HX - XW | / ( |H| |X| ulp ) * * (from inverse iteration) * CALL ZGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, W3, $ WORK, RWORK, DUMMA( 1 ) ) IF( DUMMA( 1 ).LT.ULPINV ) $ RESULT( 11 ) = DUMMA( 1 )*ANINV IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'ZHSEIN', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF END IF * * Call ZHSEIN for Left eigenvectors of H, do test 12 * NTEST = 12 RESULT( 12 ) = ULPINV DO 230 J = 1, N SELECT( J ) = .TRUE. 230 CONTINUE * CALL ZHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, W3, $ EVECTY, LDU, CDUMMA, LDU, N1, IN, WORK, RWORK, $ IWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZHSEIN(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 240 ELSE * * Test 12: | YH - WY | / ( |H| |Y| ulp ) * * (from inverse iteration) * CALL ZGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, W3, $ WORK, RWORK, DUMMA( 3 ) ) IF( DUMMA( 3 ).LT.ULPINV ) $ RESULT( 12 ) = DUMMA( 3 )*ANINV IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'ZHSEIN', $ DUMMA( 4 ), N, JTYPE, IOLDSD END IF END IF * * Call ZUNMHR for Right eigenvectors of A, do test 13 * NTEST = 13 RESULT( 13 ) = ULPINV * CALL ZUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU, $ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUNMHR(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 240 ELSE * * Test 13: | AX - XW | / ( |A| |X| ulp ) * * (from inverse iteration) * CALL ZGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, W3, $ WORK, RWORK, DUMMA( 1 ) ) IF( DUMMA( 1 ).LT.ULPINV ) $ RESULT( 13 ) = DUMMA( 1 )*ANINV END IF * * Call ZUNMHR for Left eigenvectors of A, do test 14 * NTEST = 14 RESULT( 14 ) = ULPINV * CALL ZUNMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU, $ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'ZUNMHR(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 240 ELSE * * Test 14: | YA - WY | / ( |A| |Y| ulp ) * * (from inverse iteration) * CALL ZGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, W3, $ WORK, RWORK, DUMMA( 3 ) ) IF( DUMMA( 3 ).LT.ULPINV ) $ RESULT( 14 ) = DUMMA( 3 )*ANINV END IF * * End of Loop -- Check for RESULT(j) > THRESH * 240 CONTINUE * NTESTT = NTESTT + NTEST CALL DLAFTS( 'ZHS', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) * 250 CONTINUE 260 CONTINUE * * Summary * CALL DLASUM( 'ZHS', NOUNIT, NERRS, NTESTT ) * RETURN * 9999 FORMAT( ' ZCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) 9998 FORMAT( ' ZCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ', $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X, $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, $ ')' ) 9997 FORMAT( ' ZCHKHS: Selected ', A, ' Eigenvectors from ', A, $ ' do not match other eigenvectors ', 9X, 'N=', I6, $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * * End of ZCHKHS * END