*> \brief \b CGBT02 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, * LDB, RESID ) * * .. Scalar Arguments .. * CHARACTER TRANS * INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS * REAL RESID * .. * .. Array Arguments .. * COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> CGBT02 computes the residual for a solution of a banded system of *> equations A*x = b or A'*x = b: *> RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS). *> where EPS is the machine precision. *> \endverbatim * * Arguments: * ========== * *> \param[in] TRANS *> \verbatim *> TRANS is CHARACTER*1 *> Specifies the form of the system of equations: *> = 'N': A *x = b *> = 'T': A'*x = b, where A' is the transpose of A *> = 'C': A'*x = b, where A' is the transpose of A *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of rows of the matrix A. M >= 0. *> \endverbatim *> *> \param[in] N *> \verbatim *> N is INTEGER *> The number of columns of the matrix A. N >= 0. *> \endverbatim *> *> \param[in] KL *> \verbatim *> KL is INTEGER *> The number of subdiagonals within the band of A. KL >= 0. *> \endverbatim *> *> \param[in] KU *> \verbatim *> KU is INTEGER *> The number of superdiagonals within the band of A. KU >= 0. *> \endverbatim *> *> \param[in] NRHS *> \verbatim *> NRHS is INTEGER *> The number of columns of B. NRHS >= 0. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is COMPLEX array, dimension (LDA,N) *> The original matrix A in band storage, stored in rows 1 to *> KL+KU+1. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of the array A. LDA >= max(1,KL+KU+1). *> \endverbatim *> *> \param[in] X *> \verbatim *> X is COMPLEX array, dimension (LDX,NRHS) *> The computed solution vectors for the system of linear *> equations. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of the array X. If TRANS = 'N', *> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). *> \endverbatim *> *> \param[in,out] B *> \verbatim *> B is COMPLEX array, dimension (LDB,NRHS) *> On entry, the right hand side vectors for the system of *> linear equations. *> On exit, B is overwritten with the difference B - A*X. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of the array B. IF TRANS = 'N', *> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). *> \endverbatim *> *> \param[out] RESID *> \verbatim *> RESID is REAL *> The maximum over the number of right hand sides of *> norm(B - A*X) / ( norm(A) * norm(X) * EPS ). *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex_lin * * ===================================================================== SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, $ LDB, RESID ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS REAL RESID * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CONE PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I1, I2, J, KD, N1 REAL ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. LOGICAL LSAME REAL SCASUM, SLAMCH EXTERNAL LSAME, SCASUM, SLAMCH * .. * .. External Subroutines .. EXTERNAL CGBMV * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Quick return if N = 0 pr NRHS = 0 * IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = SLAMCH( 'Epsilon' ) KD = KU + 1 ANORM = ZERO DO 10 J = 1, N I1 = MAX( KD+1-J, 1 ) I2 = MIN( KD+M-J, KL+KD ) ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) ) 10 CONTINUE IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN N1 = N ELSE N1 = M END IF * * Compute B - A*X (or B - A'*X ) * DO 20 J = 1, NRHS CALL CGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1, $ CONE, B( 1, J ), 1 ) 20 CONTINUE * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ). * RESID = ZERO DO 30 J = 1, NRHS BNORM = SCASUM( N1, B( 1, J ), 1 ) XNORM = SCASUM( N1, X( 1, J ), 1 ) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS ) END IF 30 CONTINUE * RETURN * * End of CGBT02 * END