*> \brief \b DCHKTP * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE DCHKTP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, * NMAX, AP, AINVP, B, X, XACT, WORK, RWORK, * IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NMAX, NN, NNS, NOUT * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NSVAL( * ), NVAL( * ) * DOUBLE PRECISION AINVP( * ), AP( * ), B( * ), RWORK( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DCHKTP tests DTPTRI, -TRS, -RFS, and -CON, and DLATPS *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix column dimension N. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The leading dimension of the work arrays. NMAX >= the *> maximumm value of N in NVAL. *> \endverbatim *> *> \param[out] AP *> \verbatim *> AP is DOUBLE PRECISION array, dimension *> (NMAX*(NMAX+1)/2) *> \endverbatim *> *> \param[out] AINVP *> \verbatim *> AINVP is DOUBLE PRECISION array, dimension *> (NMAX*(NMAX+1)/2) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is DOUBLE PRECISION array, dimension *> (NMAX*max(3,NSMAX)) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (NMAX) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension *> (max(NMAX,2*NSMAX)) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup double_lin * * ===================================================================== SUBROUTINE DCHKTP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR, $ NMAX, AP, AINVP, B, X, XACT, WORK, RWORK, $ IWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NNS, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NSVAL( * ), NVAL( * ) DOUBLE PRECISION AINVP( * ), AP( * ), B( * ), RWORK( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. INTEGER NTYPE1, NTYPES PARAMETER ( NTYPE1 = 10, NTYPES = 18 ) INTEGER NTESTS PARAMETER ( NTESTS = 9 ) INTEGER NTRAN PARAMETER ( NTRAN = 3 ) DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. CHARACTER DIAG, NORM, TRANS, UPLO, XTYPE CHARACTER*3 PATH INTEGER I, IDIAG, IMAT, IN, INFO, IRHS, ITRAN, IUPLO, $ K, LAP, LDA, N, NERRS, NFAIL, NRHS, NRUN DOUBLE PRECISION AINVNM, ANORM, RCOND, RCONDC, RCONDI, RCONDO, $ SCALE * .. * .. Local Arrays .. CHARACTER TRANSS( NTRAN ), UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLANTP EXTERNAL LSAME, DLANTP * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, DCOPY, DERRTR, DGET04, $ DLACPY, DLARHS, DLATPS, DLATTP, DTPCON, DTPRFS, $ DTPT01, DTPT02, DTPT03, DTPT05, DTPT06, DTPTRI, $ DTPTRS * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, IOUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, IOUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / , TRANSS / 'N', 'T', 'C' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Double precision' PATH( 2: 3 ) = 'TP' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL DERRTR( PATH, NOUT ) INFOT = 0 * DO 110 IN = 1, NN * * Do for each value of N in NVAL * N = NVAL( IN ) LDA = MAX( 1, N ) LAP = LDA*( LDA+1 ) / 2 XTYPE = 'N' * DO 70 IMAT = 1, NTYPE1 * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 70 * DO 60 IUPLO = 1, 2 * * Do first for UPLO = 'U', then for UPLO = 'L' * UPLO = UPLOS( IUPLO ) * * Call DLATTP to generate a triangular test matrix. * SRNAMT = 'DLATTP' CALL DLATTP( IMAT, UPLO, 'No transpose', DIAG, ISEED, N, $ AP, X, WORK, INFO ) * * Set IDIAG = 1 for non-unit matrices, 2 for unit. * IF( LSAME( DIAG, 'N' ) ) THEN IDIAG = 1 ELSE IDIAG = 2 END IF * *+ TEST 1 * Form the inverse of A. * IF( N.GT.0 ) $ CALL DCOPY( LAP, AP, 1, AINVP, 1 ) SRNAMT = 'DTPTRI' CALL DTPTRI( UPLO, DIAG, N, AINVP, INFO ) * * Check error code from DTPTRI. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DTPTRI', INFO, 0, UPLO // DIAG, N, $ N, -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * * Compute the infinity-norm condition number of A. * ANORM = DLANTP( 'I', UPLO, DIAG, N, AP, RWORK ) AINVNM = DLANTP( 'I', UPLO, DIAG, N, AINVP, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCONDI = ONE ELSE RCONDI = ( ONE / ANORM ) / AINVNM END IF * * Compute the residual for the triangular matrix times its * inverse. Also compute the 1-norm condition number of A. * CALL DTPT01( UPLO, DIAG, N, AP, AINVP, RCONDO, RWORK, $ RESULT( 1 ) ) * * Print the test ratio if it is .GE. THRESH. * IF( RESULT( 1 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, DIAG, N, IMAT, 1, $ RESULT( 1 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 * DO 40 IRHS = 1, NNS NRHS = NSVAL( IRHS ) XTYPE = 'N' * DO 30 ITRAN = 1, NTRAN * * Do for op(A) = A, A**T, or A**H. * TRANS = TRANSS( ITRAN ) IF( ITRAN.EQ.1 ) THEN NORM = 'O' RCONDC = RCONDO ELSE NORM = 'I' RCONDC = RCONDI END IF * *+ TEST 2 * Solve and compute residual for op(A)*x = b. * SRNAMT = 'DLARHS' CALL DLARHS( PATH, XTYPE, UPLO, TRANS, N, N, 0, $ IDIAG, NRHS, AP, LAP, XACT, LDA, B, $ LDA, ISEED, INFO ) XTYPE = 'C' CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'DTPTRS' CALL DTPTRS( UPLO, TRANS, DIAG, N, NRHS, AP, X, $ LDA, INFO ) * * Check error code from DTPTRS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DTPTRS', INFO, 0, $ UPLO // TRANS // DIAG, N, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) * CALL DTPT02( UPLO, TRANS, DIAG, N, NRHS, AP, X, $ LDA, B, LDA, WORK, RESULT( 2 ) ) * *+ TEST 3 * Check solution from generated exact solution. * CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 3 ) ) * *+ TESTS 4, 5, and 6 * Use iterative refinement to improve the solution and * compute error bounds. * SRNAMT = 'DTPRFS' CALL DTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, $ LDA, X, LDA, RWORK, RWORK( NRHS+1 ), $ WORK, IWORK, INFO ) * * Check error code from DTPRFS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DTPRFS', INFO, 0, $ UPLO // TRANS // DIAG, N, N, -1, $ -1, NRHS, IMAT, NFAIL, NERRS, $ NOUT ) * CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 4 ) ) CALL DTPT05( UPLO, TRANS, DIAG, N, NRHS, AP, B, $ LDA, X, LDA, XACT, LDA, RWORK, $ RWORK( NRHS+1 ), RESULT( 5 ) ) * * Print information about the tests that did not pass * the threshold. * DO 20 K = 2, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, TRANS, DIAG, $ N, NRHS, IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 20 CONTINUE NRUN = NRUN + 5 30 CONTINUE 40 CONTINUE * *+ TEST 7 * Get an estimate of RCOND = 1/CNDNUM. * DO 50 ITRAN = 1, 2 IF( ITRAN.EQ.1 ) THEN NORM = 'O' RCONDC = RCONDO ELSE NORM = 'I' RCONDC = RCONDI END IF * SRNAMT = 'DTPCON' CALL DTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, $ IWORK, INFO ) * * Check error code from DTPCON. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DTPCON', INFO, 0, $ NORM // UPLO // DIAG, N, N, -1, -1, $ -1, IMAT, NFAIL, NERRS, NOUT ) * CALL DTPT06( RCOND, RCONDC, UPLO, DIAG, N, AP, RWORK, $ RESULT( 7 ) ) * * Print the test ratio if it is .GE. THRESH. * IF( RESULT( 7 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9997 ) 'DTPCON', NORM, UPLO, $ DIAG, N, IMAT, 7, RESULT( 7 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 50 CONTINUE 60 CONTINUE 70 CONTINUE * * Use pathological test matrices to test DLATPS. * DO 100 IMAT = NTYPE1 + 1, NTYPES * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 100 * DO 90 IUPLO = 1, 2 * * Do first for UPLO = 'U', then for UPLO = 'L' * UPLO = UPLOS( IUPLO ) DO 80 ITRAN = 1, NTRAN * * Do for op(A) = A, A**T, or A**H. * TRANS = TRANSS( ITRAN ) * * Call DLATTP to generate a triangular test matrix. * SRNAMT = 'DLATTP' CALL DLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, X, $ WORK, INFO ) * *+ TEST 8 * Solve the system op(A)*x = b. * SRNAMT = 'DLATPS' CALL DCOPY( N, X, 1, B, 1 ) CALL DLATPS( UPLO, TRANS, DIAG, 'N', N, AP, B, SCALE, $ RWORK, INFO ) * * Check error code from DLATPS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DLATPS', INFO, 0, $ UPLO // TRANS // DIAG // 'N', N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * CALL DTPT03( UPLO, TRANS, DIAG, N, 1, AP, SCALE, $ RWORK, ONE, B, LDA, X, LDA, WORK, $ RESULT( 8 ) ) * *+ TEST 9 * Solve op(A)*x = b again with NORMIN = 'Y'. * CALL DCOPY( N, X, 1, B( N+1 ), 1 ) CALL DLATPS( UPLO, TRANS, DIAG, 'Y', N, AP, B( N+1 ), $ SCALE, RWORK, INFO ) * * Check error code from DLATPS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'DLATPS', INFO, 0, $ UPLO // TRANS // DIAG // 'Y', N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * CALL DTPT03( UPLO, TRANS, DIAG, N, 1, AP, SCALE, $ RWORK, ONE, B( N+1 ), LDA, X, LDA, WORK, $ RESULT( 9 ) ) * * Print information about the tests that did not pass * the threshold. * IF( RESULT( 8 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9996 )'DLATPS', UPLO, TRANS, $ DIAG, 'N', N, IMAT, 8, RESULT( 8 ) NFAIL = NFAIL + 1 END IF IF( RESULT( 9 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9996 )'DLATPS', UPLO, TRANS, $ DIAG, 'Y', N, IMAT, 9, RESULT( 9 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 2 80 CONTINUE 90 CONTINUE 100 CONTINUE 110 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO=''', A1, ''', DIAG=''', A1, ''', N=', I5, $ ', type ', I2, ', test(', I2, ')= ', G12.5 ) 9998 FORMAT( ' UPLO=''', A1, ''', TRANS=''', A1, ''', DIAG=''', A1, $ ''', N=', I5, ''', NRHS=', I5, ', type ', I2, ', test(', $ I2, ')= ', G12.5 ) 9997 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ''', A1, ''',', $ I5, ', ... ), type ', I2, ', test(', I2, ')=', G12.5 ) 9996 FORMAT( 1X, A, '( ''', A1, ''', ''', A1, ''', ''', A1, ''', ''', $ A1, ''',', I5, ', ... ), type ', I2, ', test(', I2, ')=', $ G12.5 ) RETURN * * End of DCHKTP * END