*> \brief \b SORHR_COL02 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE SORHR_COL02( M, N, MB1, NB1, NB2, RESULT ) * * .. Scalar Arguments .. * INTEGER M, N, MB1, NB1, NB2 * .. Return values .. * REAL RESULT(6) * * *> \par Purpose: * ============= *> *> \verbatim *> *> SORHR_COL02 tests SORGTSQR_ROW and SORHR_COL inside SGETSQRHRT *> (which calls SLATSQR, SORGTSQR_ROW and SORHR_COL) using SGEMQRT. *> Therefore, SLATSQR (part of SGEQR), SGEMQRT (part of SGEMQR) *> have to be tested before this test. *> *> \endverbatim * * Arguments: * ========== * *> \param[in] M *> \verbatim *> M is INTEGER *> Number of rows in test matrix. *> \endverbatim *> \param[in] N *> \verbatim *> N is INTEGER *> Number of columns in test matrix. *> \endverbatim *> \param[in] MB1 *> \verbatim *> MB1 is INTEGER *> Number of row in row block in an input test matrix. *> \endverbatim *> *> \param[in] NB1 *> \verbatim *> NB1 is INTEGER *> Number of columns in column block an input test matrix. *> \endverbatim *> *> \param[in] NB2 *> \verbatim *> NB2 is INTEGER *> Number of columns in column block in an output test matrix. *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is REAL array, dimension (6) *> Results of each of the six tests below. *> *> A is a m-by-n test input matrix to be factored. *> so that A = Q_gr * ( R ) *> ( 0 ), *> *> Q_qr is an implicit m-by-m orthogonal Q matrix, the result *> of factorization in blocked WY-representation, *> stored in SGEQRT output format. *> *> R is a n-by-n upper-triangular matrix, *> *> 0 is a (m-n)-by-n zero matrix, *> *> Q is an explicit m-by-m orthogonal matrix Q = Q_gr * I *> *> C is an m-by-n random matrix, *> *> D is an n-by-m random matrix. *> *> The six tests are: *> *> RESULT(1) = |R - (Q**H) * A| / ( eps * m * |A| ) *> is equivalent to test for | A - Q * R | / (eps * m * |A|), *> *> RESULT(2) = |I - (Q**H) * Q| / ( eps * m ), *> *> RESULT(3) = | Q_qr * C - Q * C | / (eps * m * |C|), *> *> RESULT(4) = | (Q_gr**H) * C - (Q**H) * C | / (eps * m * |C|) *> *> RESULT(5) = | D * Q_qr - D * Q | / (eps * m * |D|) *> *> RESULT(6) = | D * (Q_qr**H) - D * (Q**H) | / (eps * m * |D|), *> *> where: *> Q_qr * C, (Q_gr**H) * C, D * Q_qr, D * (Q_qr**H) are *> computed using SGEMQRT, *> *> Q * C, (Q**H) * C, D * Q, D * (Q**H) are *> computed using SGEMM. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup single_lin * * ===================================================================== SUBROUTINE SORHR_COL02( M, N, MB1, NB1, NB2, RESULT ) IMPLICIT NONE * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. INTEGER M, N, MB1, NB1, NB2 * .. Return values .. REAL RESULT(6) * * ===================================================================== * * .. * .. Local allocatable arrays REAL , ALLOCATABLE :: A(:,:), AF(:,:), Q(:,:), R(:,:), $ RWORK(:), WORK( : ), T1(:,:), T2(:,:), DIAG(:), $ C(:,:), CF(:,:), D(:,:), DF(:,:) * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL TESTZEROS INTEGER INFO, J, K, L, LWORK, NB2_UB, NRB REAL ANORM, EPS, RESID, CNORM, DNORM * .. * .. Local Arrays .. INTEGER ISEED( 4 ) REAL WORKQUERY( 1 ) * .. * .. External Functions .. REAL SLAMCH, SLANGE, SLANSY EXTERNAL SLAMCH, SLANGE, SLANSY * .. * .. External Subroutines .. EXTERNAL SLACPY, SLARNV, SLASET, SGETSQRHRT, $ SSCAL, SGEMM, SGEMQRT, SSYRK * .. * .. Intrinsic Functions .. INTRINSIC CEILING, REAL, MAX, MIN * .. * .. Scalars in Common .. CHARACTER(LEN=32) SRNAMT * .. * .. Common blocks .. COMMON / SRMNAMC / SRNAMT * .. * .. Data statements .. DATA ISEED / 1988, 1989, 1990, 1991 / * * TEST MATRICES WITH HALF OF MATRIX BEING ZEROS * TESTZEROS = .FALSE. * EPS = SLAMCH( 'Epsilon' ) K = MIN( M, N ) L = MAX( M, N, 1) * * Dynamically allocate local arrays * ALLOCATE ( A(M,N), AF(M,N), Q(L,L), R(M,L), RWORK(L), $ C(M,N), CF(M,N), $ D(N,M), DF(N,M) ) * * Put random numbers into A and copy to AF * DO J = 1, N CALL SLARNV( 2, ISEED, M, A( 1, J ) ) END DO IF( TESTZEROS ) THEN IF( M.GE.4 ) THEN DO J = 1, N CALL SLARNV( 2, ISEED, M/2, A( M/4, J ) ) END DO END IF END IF CALL SLACPY( 'Full', M, N, A, M, AF, M ) * * Number of row blocks in SLATSQR * NRB = MAX( 1, CEILING( REAL( M - N ) / REAL( MB1 - N ) ) ) * ALLOCATE ( T1( NB1, N * NRB ) ) ALLOCATE ( T2( NB2, N ) ) ALLOCATE ( DIAG( N ) ) * * Begin determine LWORK for the array WORK and allocate memory. * * SGEMQRT requires NB2 to be bounded by N. * NB2_UB = MIN( NB2, N) * CALL SGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, $ WORKQUERY, -1, INFO ) * LWORK = INT( WORKQUERY( 1 ) ) * * In SGEMQRT, WORK is N*NB2_UB if SIDE = 'L', * or M*NB2_UB if SIDE = 'R'. * LWORK = MAX( LWORK, NB2_UB * N, NB2_UB * M ) * ALLOCATE ( WORK( LWORK ) ) * * End allocate memory for WORK. * * * Begin Householder reconstruction routines * * Factor the matrix A in the array AF. * SRNAMT = 'SGETSQRHRT' CALL SGETSQRHRT( M, N, MB1, NB1, NB2, AF, M, T2, NB2, $ WORK, LWORK, INFO ) * * End Householder reconstruction routines. * * * Generate the m-by-m matrix Q * CALL SLASET( 'Full', M, M, ZERO, ONE, Q, M ) * SRNAMT = 'SGEMQRT' CALL SGEMQRT( 'L', 'N', M, M, K, NB2_UB, AF, M, T2, NB2, Q, M, $ WORK, INFO ) * * Copy R * CALL SLASET( 'Full', M, N, ZERO, ZERO, R, M ) * CALL SLACPY( 'Upper', M, N, AF, M, R, M ) * * TEST 1 * Compute |R - (Q**T)*A| / ( eps * m * |A| ) and store in RESULT(1) * CALL SGEMM( 'T', 'N', M, N, M, -ONE, Q, M, A, M, ONE, R, M ) * ANORM = SLANGE( '1', M, N, A, M, RWORK ) RESID = SLANGE( '1', M, N, R, M, RWORK ) IF( ANORM.GT.ZERO ) THEN RESULT( 1 ) = RESID / ( EPS * MAX( 1, M ) * ANORM ) ELSE RESULT( 1 ) = ZERO END IF * * TEST 2 * Compute |I - (Q**T)*Q| / ( eps * m ) and store in RESULT(2) * CALL SLASET( 'Full', M, M, ZERO, ONE, R, M ) CALL SSYRK( 'U', 'T', M, M, -ONE, Q, M, ONE, R, M ) RESID = SLANSY( '1', 'Upper', M, R, M, RWORK ) RESULT( 2 ) = RESID / ( EPS * MAX( 1, M ) ) * * Generate random m-by-n matrix C * DO J = 1, N CALL SLARNV( 2, ISEED, M, C( 1, J ) ) END DO CNORM = SLANGE( '1', M, N, C, M, RWORK ) CALL SLACPY( 'Full', M, N, C, M, CF, M ) * * Apply Q to C as Q*C = CF * SRNAMT = 'SGEMQRT' CALL SGEMQRT( 'L', 'N', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, $ WORK, INFO ) * * TEST 3 * Compute |CF - Q*C| / ( eps * m * |C| ) * CALL SGEMM( 'N', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M ) RESID = SLANGE( '1', M, N, CF, M, RWORK ) IF( CNORM.GT.ZERO ) THEN RESULT( 3 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) ELSE RESULT( 3 ) = ZERO END IF * * Copy C into CF again * CALL SLACPY( 'Full', M, N, C, M, CF, M ) * * Apply Q to C as (Q**T)*C = CF * SRNAMT = 'SGEMQRT' CALL SGEMQRT( 'L', 'T', M, N, K, NB2_UB, AF, M, T2, NB2, CF, M, $ WORK, INFO ) * * TEST 4 * Compute |CF - (Q**T)*C| / ( eps * m * |C|) * CALL SGEMM( 'T', 'N', M, N, M, -ONE, Q, M, C, M, ONE, CF, M ) RESID = SLANGE( '1', M, N, CF, M, RWORK ) IF( CNORM.GT.ZERO ) THEN RESULT( 4 ) = RESID / ( EPS * MAX( 1, M ) * CNORM ) ELSE RESULT( 4 ) = ZERO END IF * * Generate random n-by-m matrix D and a copy DF * DO J = 1, M CALL SLARNV( 2, ISEED, N, D( 1, J ) ) END DO DNORM = SLANGE( '1', N, M, D, N, RWORK ) CALL SLACPY( 'Full', N, M, D, N, DF, N ) * * Apply Q to D as D*Q = DF * SRNAMT = 'SGEMQRT' CALL SGEMQRT( 'R', 'N', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, $ WORK, INFO ) * * TEST 5 * Compute |DF - D*Q| / ( eps * m * |D| ) * CALL SGEMM( 'N', 'N', N, M, M, -ONE, D, N, Q, M, ONE, DF, N ) RESID = SLANGE( '1', N, M, DF, N, RWORK ) IF( DNORM.GT.ZERO ) THEN RESULT( 5 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) ELSE RESULT( 5 ) = ZERO END IF * * Copy D into DF again * CALL SLACPY( 'Full', N, M, D, N, DF, N ) * * Apply Q to D as D*QT = DF * SRNAMT = 'SGEMQRT' CALL SGEMQRT( 'R', 'T', N, M, K, NB2_UB, AF, M, T2, NB2, DF, N, $ WORK, INFO ) * * TEST 6 * Compute |DF - D*(Q**T)| / ( eps * m * |D| ) * CALL SGEMM( 'N', 'T', N, M, M, -ONE, D, N, Q, M, ONE, DF, N ) RESID = SLANGE( '1', N, M, DF, N, RWORK ) IF( DNORM.GT.ZERO ) THEN RESULT( 6 ) = RESID / ( EPS * MAX( 1, M ) * DNORM ) ELSE RESULT( 6 ) = ZERO END IF * * Deallocate all arrays * DEALLOCATE ( A, AF, Q, R, RWORK, WORK, T1, T2, DIAG, $ C, D, CF, DF ) * RETURN * * End of SORHR_COL02 * END