*> \brief \b ZCHKHE_RK * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZCHKHE_RK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, * XACT, WORK, RWORK, IWORK, NOUT ) * * .. Scalar Arguments .. * LOGICAL TSTERR * INTEGER NMAX, NN, NNB, NNS, NOUT * DOUBLE PRECISION THRESH * .. * .. Array Arguments .. * LOGICAL DOTYPE( * ) * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) * DOUBLE PRECISION RWORK( * ) * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), E( * ), * $ WORK( * ), X( * ), XACT( * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZCHKHE_RK tests ZHETRF_RK, -TRI_3, -TRS_3, *> and -CON_3. *> \endverbatim * * Arguments: * ========== * *> \param[in] DOTYPE *> \verbatim *> DOTYPE is LOGICAL array, dimension (NTYPES) *> The matrix types to be used for testing. Matrices of type j *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. *> \endverbatim *> *> \param[in] NN *> \verbatim *> NN is INTEGER *> The number of values of N contained in the vector NVAL. *> \endverbatim *> *> \param[in] NVAL *> \verbatim *> NVAL is INTEGER array, dimension (NN) *> The values of the matrix dimension N. *> \endverbatim *> *> \param[in] NNB *> \verbatim *> NNB is INTEGER *> The number of values of NB contained in the vector NBVAL. *> \endverbatim *> *> \param[in] NBVAL *> \verbatim *> NBVAL is INTEGER array, dimension (NBVAL) *> The values of the blocksize NB. *> \endverbatim *> *> \param[in] NNS *> \verbatim *> NNS is INTEGER *> The number of values of NRHS contained in the vector NSVAL. *> \endverbatim *> *> \param[in] NSVAL *> \verbatim *> NSVAL is INTEGER array, dimension (NNS) *> The values of the number of right hand sides NRHS. *> \endverbatim *> *> \param[in] THRESH *> \verbatim *> THRESH is DOUBLE PRECISION *> The threshold value for the test ratios. A result is *> included in the output file if RESULT >= THRESH. To have *> every test ratio printed, use THRESH = 0. *> \endverbatim *> *> \param[in] TSTERR *> \verbatim *> TSTERR is LOGICAL *> Flag that indicates whether error exits are to be tested. *> \endverbatim *> *> \param[in] NMAX *> \verbatim *> NMAX is INTEGER *> The maximum value permitted for N, used in dimensioning the *> work arrays. *> \endverbatim *> *> \param[out] A *> \verbatim *> A is CCOMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] AFAC *> \verbatim *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] E *> \verbatim *> E is COMPLEX*16 array, dimension (NMAX) *> \endverbatim *> *> \param[out] AINV *> \verbatim *> AINV is COMPLEX*16 array, dimension (NMAX*NMAX) *> \endverbatim *> *> \param[out] B *> \verbatim *> B is CCOMPLEX*16 array, dimension (NMAX*NSMAX) *> where NSMAX is the largest entry in NSVAL. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is COMPLEX*16 array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] XACT *> \verbatim *> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX) *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX)) *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX) *> \endverbatim *> *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (2*NMAX) *> \endverbatim *> *> \param[in] NOUT *> \verbatim *> NOUT is INTEGER *> The unit number for output. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup complex16_lin * * ===================================================================== SUBROUTINE ZCHKHE_RK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, $ THRESH, TSTERR, NMAX, A, AFAC, E, AINV, B, $ X, XACT, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NMAX, NN, NNB, NNS, NOUT DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), E( * ), $ WORK( * ), X( * ), XACT( * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) DOUBLE PRECISION ONEHALF PARAMETER ( ONEHALF = 0.5D+0 ) DOUBLE PRECISION EIGHT, SEVTEN PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 ) COMPLEX*16 CZERO PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) INTEGER NTYPES PARAMETER ( NTYPES = 10 ) INTEGER NTESTS PARAMETER ( NTESTS = 7 ) * .. * .. Local Scalars .. LOGICAL TRFCON, ZEROT CHARACTER DIST, TYPE, UPLO, XTYPE CHARACTER*3 PATH, MATPATH INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS, $ ITEMP, ITEMP2, IUPLO, IZERO, J, K, KL, KU, LDA, $ LWORK, MODE, N, NB, NERRS, NFAIL, NIMAT, NRHS, $ NRUN, NT DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, SING_MAX, $ SING_MIN, RCOND, RCONDC, DTEMP * .. * .. Local Arrays .. CHARACTER UPLOS( 2 ) INTEGER ISEED( 4 ), ISEEDY( 4 ), IDUMMY( 1 ) DOUBLE PRECISION RESULT( NTESTS ) COMPLEX*16 BLOCK( 2, 2 ), ZDUMMY( 1 ) * .. * .. External Functions .. DOUBLE PRECISION DGET06, ZLANGE, ZLANHE EXTERNAL DGET06, ZLANGE, ZLANHE * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, ZERRHE, ZGESVD, ZGET04, $ ZLACPY, ZLARHS, ZLATB4, ZLATMS, ZPOT02, ZPOT03, $ ZHECON_3, ZHET01_3, ZHETRF_RK, ZHETRI_3, $ ZHETRS_3, XLAENV * .. * .. Intrinsic Functions .. INTRINSIC DCONJG, MAX, MIN, SQRT * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / DATA UPLOS / 'U', 'L' / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT * * Test path * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'HK' * * Path to generate matrices * MATPATH( 1: 1 ) = 'Zomplex precision' MATPATH( 2: 3 ) = 'HE' * NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL ZERRHE( PATH, NOUT ) INFOT = 0 * * Set the minimum block size for which the block routine should * be used, which will be later returned by ILAENV * CALL XLAENV( 2, 2 ) * * Do for each value of N in NVAL * DO 270 IN = 1, NN N = NVAL( IN ) LDA = MAX( N, 1 ) XTYPE = 'N' NIMAT = NTYPES IF( N.LE.0 ) $ NIMAT = 1 * IZERO = 0 * * Do for each value of matrix type IMAT * DO 260 IMAT = 1, NIMAT * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 260 * * Skip types 3, 4, 5, or 6 if the matrix size is too small. * ZEROT = IMAT.GE.3 .AND. IMAT.LE.6 IF( ZEROT .AND. N.LT.IMAT-2 ) $ GO TO 260 * * Do first for UPLO = 'U', then for UPLO = 'L' * DO 250 IUPLO = 1, 2 UPLO = UPLOS( IUPLO ) * * Begin generate the test matrix A. * * Set up parameters with ZLATB4 for the matrix generator * based on the type of matrix to be generated. * CALL ZLATB4( MATPATH, IMAT, N, N, TYPE, KL, KU, ANORM, $ MODE, CNDNUM, DIST ) * * Generate a matrix with ZLATMS. * SRNAMT = 'ZLATMS' CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, $ WORK, INFO ) * * Check error code from ZLATMS and handle error. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'ZLATMS', INFO, 0, UPLO, N, N, $ -1, -1, -1, IMAT, NFAIL, NERRS, NOUT ) * * Skip all tests for this generated matrix * GO TO 250 END IF * * For matrix types 3-6, zero one or more rows and * columns of the matrix to test that INFO is returned * correctly. * IF( ZEROT ) THEN IF( IMAT.EQ.3 ) THEN IZERO = 1 ELSE IF( IMAT.EQ.4 ) THEN IZERO = N ELSE IZERO = N / 2 + 1 END IF * IF( IMAT.LT.6 ) THEN * * Set row and column IZERO to zero. * IF( IUPLO.EQ.1 ) THEN IOFF = ( IZERO-1 )*LDA DO 20 I = 1, IZERO - 1 A( IOFF+I ) = CZERO 20 CONTINUE IOFF = IOFF + IZERO DO 30 I = IZERO, N A( IOFF ) = CZERO IOFF = IOFF + LDA 30 CONTINUE ELSE IOFF = IZERO DO 40 I = 1, IZERO - 1 A( IOFF ) = CZERO IOFF = IOFF + LDA 40 CONTINUE IOFF = IOFF - IZERO DO 50 I = IZERO, N A( IOFF+I ) = CZERO 50 CONTINUE END IF ELSE IF( IUPLO.EQ.1 ) THEN * * Set the first IZERO rows and columns to zero. * IOFF = 0 DO 70 J = 1, N I2 = MIN( J, IZERO ) DO 60 I = 1, I2 A( IOFF+I ) = CZERO 60 CONTINUE IOFF = IOFF + LDA 70 CONTINUE ELSE * * Set the last IZERO rows and columns to zero. * IOFF = 0 DO 90 J = 1, N I1 = MAX( J, IZERO ) DO 80 I = I1, N A( IOFF+I ) = CZERO 80 CONTINUE IOFF = IOFF + LDA 90 CONTINUE END IF END IF ELSE IZERO = 0 END IF * * End generate the test matrix A. * * * Do for each value of NB in NBVAL * DO 240 INB = 1, NNB * * Set the optimal blocksize, which will be later * returned by ILAENV. * NB = NBVAL( INB ) CALL XLAENV( 1, NB ) * * Copy the test matrix A into matrix AFAC which * will be factorized in place. This is needed to * preserve the test matrix A for subsequent tests. * CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA ) * * Compute the L*D*L**T or U*D*U**T factorization of the * matrix. IWORK stores details of the interchanges and * the block structure of D. AINV is a work array for * block factorization, LWORK is the length of AINV. * LWORK = MAX( 2, NB )*LDA SRNAMT = 'ZHETRF_RK' CALL ZHETRF_RK( UPLO, N, AFAC, LDA, E, IWORK, AINV, $ LWORK, INFO ) * * Adjust the expected value of INFO to account for * pivoting. * K = IZERO IF( K.GT.0 ) THEN 100 CONTINUE IF( IWORK( K ).LT.0 ) THEN IF( IWORK( K ).NE.-K ) THEN K = -IWORK( K ) GO TO 100 END IF ELSE IF( IWORK( K ).NE.K ) THEN K = IWORK( K ) GO TO 100 END IF END IF * * Check error code from ZHETRF_RK and handle error. * IF( INFO.NE.K) $ CALL ALAERH( PATH, 'ZHETRF_RK', INFO, K, $ UPLO, N, N, -1, -1, NB, IMAT, $ NFAIL, NERRS, NOUT ) * * Set the condition estimate flag if the INFO is not 0. * IF( INFO.NE.0 ) THEN TRFCON = .TRUE. ELSE TRFCON = .FALSE. END IF * *+ TEST 1 * Reconstruct matrix from factors and compute residual. * CALL ZHET01_3( UPLO, N, A, LDA, AFAC, LDA, E, IWORK, $ AINV, LDA, RWORK, RESULT( 1 ) ) NT = 1 * *+ TEST 2 * Form the inverse and compute the residual, * if the factorization was competed without INFO > 0 * (i.e. there is no zero rows and columns). * Do it only for the first block size. * IF( INB.EQ.1 .AND. .NOT.TRFCON ) THEN CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) SRNAMT = 'ZHETRI_3' * * Another reason that we need to compute the inverse * is that ZPOT03 produces RCONDC which is used later * in TEST6 and TEST7. * LWORK = (N+NB+1)*(NB+3) CALL ZHETRI_3( UPLO, N, AINV, LDA, E, IWORK, WORK, $ LWORK, INFO ) * * Check error code from ZHETRI_3 and handle error. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZHETRI_3', INFO, -1, $ UPLO, N, N, -1, -1, -1, IMAT, $ NFAIL, NERRS, NOUT ) * * Compute the residual for a Hermitian matrix times * its inverse. * CALL ZPOT03( UPLO, N, A, LDA, AINV, LDA, WORK, LDA, $ RWORK, RCONDC, RESULT( 2 ) ) NT = 2 END IF * * Print information about the tests that did not pass * the threshold. * DO 110 K = 1, NT IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 110 CONTINUE NRUN = NRUN + NT * *+ TEST 3 * Compute largest element in U or L * RESULT( 3 ) = ZERO DTEMP = ZERO * CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) ) / $ ( ONE-ALPHA ) * IF( IUPLO.EQ.1 ) THEN * * Compute largest element in U * K = N 120 CONTINUE IF( K.LE.1 ) $ GO TO 130 * IF( IWORK( K ).GT.ZERO ) THEN * * Get max absolute value from elements * in column k in U * DTEMP = ZLANGE( 'M', K-1, 1, $ AFAC( ( K-1 )*LDA+1 ), LDA, RWORK ) ELSE * * Get max absolute value from elements * in columns k and k-1 in U * DTEMP = ZLANGE( 'M', K-2, 2, $ AFAC( ( K-2 )*LDA+1 ), LDA, RWORK ) K = K - 1 * END IF * * DTEMP should be bounded by CONST * DTEMP = DTEMP - CONST + THRESH IF( DTEMP.GT.RESULT( 3 ) ) $ RESULT( 3 ) = DTEMP * K = K - 1 * GO TO 120 130 CONTINUE * ELSE * * Compute largest element in L * K = 1 140 CONTINUE IF( K.GE.N ) $ GO TO 150 * IF( IWORK( K ).GT.ZERO ) THEN * * Get max absolute value from elements * in column k in L * DTEMP = ZLANGE( 'M', N-K, 1, $ AFAC( ( K-1 )*LDA+K+1 ), LDA, RWORK ) ELSE * * Get max absolute value from elements * in columns k and k+1 in L * DTEMP = ZLANGE( 'M', N-K-1, 2, $ AFAC( ( K-1 )*LDA+K+2 ), LDA, RWORK ) K = K + 1 * END IF * * DTEMP should be bounded by CONST * DTEMP = DTEMP - CONST + THRESH IF( DTEMP.GT.RESULT( 3 ) ) $ RESULT( 3 ) = DTEMP * K = K + 1 * GO TO 140 150 CONTINUE END IF * * *+ TEST 4 * Compute largest 2-Norm (condition number) * of 2-by-2 diag blocks * RESULT( 4 ) = ZERO DTEMP = ZERO * CONST = ( ( ALPHA**2-ONE ) / ( ALPHA**2-ONEHALF ) )* $ ( ( ONE + ALPHA ) / ( ONE - ALPHA ) ) CALL ZLACPY( UPLO, N, N, AFAC, LDA, AINV, LDA ) * IF( IUPLO.EQ.1 ) THEN * * Loop backward for UPLO = 'U' * K = N 160 CONTINUE IF( K.LE.1 ) $ GO TO 170 * IF( IWORK( K ).LT.ZERO ) THEN * * Get the two singular values * (real and non-negative) of a 2-by-2 block, * store them in RWORK array * BLOCK( 1, 1 ) = AFAC( ( K-2 )*LDA+K-1 ) BLOCK( 1, 2 ) = E( K ) BLOCK( 2, 1 ) = DCONJG( BLOCK( 1, 2 ) ) BLOCK( 2, 2 ) = AFAC( (K-1)*LDA+K ) * CALL ZGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK, $ ZDUMMY, 1, ZDUMMY, 1, $ WORK, 6, RWORK( 3 ), INFO ) * * SING_MAX = RWORK( 1 ) SING_MIN = RWORK( 2 ) * DTEMP = SING_MAX / SING_MIN * * DTEMP should be bounded by CONST * DTEMP = DTEMP - CONST + THRESH IF( DTEMP.GT.RESULT( 4 ) ) $ RESULT( 4 ) = DTEMP K = K - 1 * END IF * K = K - 1 * GO TO 160 170 CONTINUE * ELSE * * Loop forward for UPLO = 'L' * K = 1 180 CONTINUE IF( K.GE.N ) $ GO TO 190 * IF( IWORK( K ).LT.ZERO ) THEN * * Get the two singular values * (real and non-negative) of a 2-by-2 block, * store them in RWORK array * BLOCK( 1, 1 ) = AFAC( ( K-1 )*LDA+K ) BLOCK( 2, 1 ) = E( K ) BLOCK( 1, 2 ) = DCONJG( BLOCK( 2, 1 ) ) BLOCK( 2, 2 ) = AFAC( K*LDA+K+1 ) * CALL ZGESVD( 'N', 'N', 2, 2, BLOCK, 2, RWORK, $ ZDUMMY, 1, ZDUMMY, 1, $ WORK, 6, RWORK(3), INFO ) * SING_MAX = RWORK( 1 ) SING_MIN = RWORK( 2 ) * DTEMP = SING_MAX / SING_MIN * * DTEMP should be bounded by CONST * DTEMP = DTEMP - CONST + THRESH IF( DTEMP.GT.RESULT( 4 ) ) $ RESULT( 4 ) = DTEMP K = K + 1 * END IF * K = K + 1 * GO TO 180 190 CONTINUE END IF * * Print information about the tests that did not pass * the threshold. * DO 200 K = 3, 4 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )UPLO, N, NB, IMAT, K, $ RESULT( K ) NFAIL = NFAIL + 1 END IF 200 CONTINUE NRUN = NRUN + 2 * * Skip the other tests if this is not the first block * size. * IF( INB.GT.1 ) $ GO TO 240 * * Do only the condition estimate if INFO is not 0. * IF( TRFCON ) THEN RCONDC = ZERO GO TO 230 END IF * * Do for each value of NRHS in NSVAL. * DO 220 IRHS = 1, NNS NRHS = NSVAL( IRHS ) * * Begin loop over NRHS values * * *+ TEST 5 ( Using TRS_3) * Solve and compute residual for A * X = B. * * Choose a set of NRHS random solution vectors * stored in XACT and set up the right hand side B * SRNAMT = 'ZLARHS' CALL ZLARHS( MATPATH, XTYPE, UPLO, ' ', N, N, $ KL, KU, NRHS, A, LDA, XACT, LDA, $ B, LDA, ISEED, INFO ) CALL ZLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'ZHETRS_3' CALL ZHETRS_3( UPLO, N, NRHS, AFAC, LDA, E, IWORK, $ X, LDA, INFO ) * * Check error code from ZHETRS_3 and handle error. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZHETRS_3', INFO, 0, $ UPLO, N, N, -1, -1, NRHS, IMAT, $ NFAIL, NERRS, NOUT ) * CALL ZLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA ) * * Compute the residual for the solution * CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA, WORK, $ LDA, RWORK, RESULT( 5 ) ) * *+ TEST 6 * Check solution from generated exact solution. * CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC, $ RESULT( 6 ) ) * * Print information about the tests that did not pass * the threshold. * DO 210 K = 5, 6 IF( RESULT( K ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9998 )UPLO, N, NRHS, $ IMAT, K, RESULT( K ) NFAIL = NFAIL + 1 END IF 210 CONTINUE NRUN = NRUN + 2 * * End do for each value of NRHS in NSVAL. * 220 CONTINUE * *+ TEST 7 * Get an estimate of RCOND = 1/CNDNUM. * 230 CONTINUE ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK ) SRNAMT = 'ZHECON_3' CALL ZHECON_3( UPLO, N, AFAC, LDA, E, IWORK, ANORM, $ RCOND, WORK, INFO ) * * Check error code from ZHECON_3 and handle error. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZHECON_3', INFO, 0, $ UPLO, N, N, -1, -1, -1, IMAT, $ NFAIL, NERRS, NOUT ) * * Compute the test ratio to compare values of RCOND * RESULT( 7 ) = DGET06( RCOND, RCONDC ) * * Print information about the tests that did not pass * the threshold. * IF( RESULT( 7 ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9997 )UPLO, N, IMAT, 7, $ RESULT( 7 ) NFAIL = NFAIL + 1 END IF NRUN = NRUN + 1 240 CONTINUE * 250 CONTINUE 260 CONTINUE 270 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NB =', I4, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) 9998 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ', NRHS=', I3, ', type ', $ I2, ', test ', I2, ', ratio =', G12.5 ) 9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2, $ ', test ', I2, ', ratio =', G12.5 ) RETURN * * End of ZCHKHE_RK * END