x__TEXT00__text__TEXT  __stubs__TEXT~__stub_helper__TEXT<<__const__TEXT ` __cstring__TEXT ) __unwind_info__TEXT..__eh_frame__TEXT@/@/__DATA00__nl_symbol_ptr__DATA00__got__DATA00__la_symbol_ptr__DATA00__data__DATA0H0__bss__DATA1@H__LINKEDIT@P@DL"0@@8@@ABn Pm-Qل%5Yv$ * 8/usr/lib/libSystem.B.dylib 0@rpath/libmx.dylib 0@rpath/libmex.dylib 0@rpath/libmat.dylib 0x/usr/lib/libc++.1.dylib&B@)@B+@B@UHH)0) ))))))HLLHHH[()p()M()U()]()e()m( )u(0)}HHhHH`HHXHHPHHHLLE1H]@UHHH}H}7$H]UHAWAVAUATSHXWH"HHEЉH HHDžHDžHDžHDžHDžDždDžHDžHDžHDžpƅkDždHuHEHrHEHDžXHDžP  H=2HH8,HcHHHxHHHxH= H=NHHxH; H=?HHxgH; H=1HHx >H; H=#[ H=$?HHx H=$HHxHHGHHxHHHxHHHxHHHx MHHx RHnH=HH 4F\HHx 4HHx HPHHHHHHcH=H=H5#H NQ ƅkDžlHclH;:HclHPHHclHHʋll[H=H H@HHz 0 H=HưH=, HHx HXHHH HHHcH=H=H5H  ƅkDžlHclH;<HclHXH,HclHHʋll HH*wHHx0 H=HH*:HHx0 Wf. H={  K pHHx8 H= :HHx8 Wf. H=   HDžMHHx@ H=HDžHHx@b H,H HHxH1 ,ȉ HHxP ,ȉHHH HxHxHcH=H= H5 H J HHHHiHHi HHHHHHHZ HpHp€HcH=H=u H5z H P HiHHHHHcH=H= H5 H @  H= HHx(3HH HWH(H0H(HHH0 H= H0H8HHcH9ш+HHcH9ˆ++WHHHHHLLLLPH@LuLILLLLH HHHxHHpHHHLHLLMLLML L$$LLl$LL|$LL|$LL|$ HD$(HHD$0HHD$8LT$@Lt$HH\$PL\$X]H /H#DžlHclH;<HclHHclHHllLC H H@H*H8~H@THH(H; H=EHH H= H=!HH H= HHH@DžlHclH;<HclH@HclHxllHHHHbH@HHH H(HHH*HHAH*xHHAH*OHHA  H=kHHHxHHpHHHHHH;EHX[A\A]A^A_]UHAWAVAUATSHhHEhLU`L]XH]PLuHL}@Le8Lm0H8HE(H0HE H(HEH HEH}HuHUHMLELMHEH HEH(HMH0HULmLxLpLhH`LXLPH8HHHxHHxH}HH}H}HH}H}HH}H}HH}H}HH}H}HH}HXHHXHPHHPHHHHHHpH?HEHHMHHPHAHEHH@H@H@HPHAHEHH@H@H@HHPHAHPH@ HPH@ HPHAHPHA(HPH@(HPHAHPHA0HPH@0HPHAHPHA8HPH@8HPHAHPHA@HPH@@HPHAHPHAHHPH@HHPHAHPHAPHPH@PHPHAHPHAXHPH@XHMHHPHA`HPH@`HMHHPHAhHPH@hHMHHPHApHPH@pHMHHPHAxHPH@xHMHHPHHPH@ HHPH@(HHPH@0HoHPH@8H=HPH@@HCHPH@HHHPH@PH7HPH@XHHPH@`HHPH@hHHPH@pHHPH@xHHPHHH}HuHEHHMHHUHLEILMLUIL]H]L5WL}IML5]LeIML5CLmIML5HHEILL5HHEILL5HHEILL5HHEILL5HHEILL5lHHEILL5KHHEILL5BHHEILL5QHHEILL5 HHEILLxIHHEHHHHxHHHHHHHHHMH HHHHxHHHpHHhHH`HHXHHHPHHxHHHHpHHhHHH`HHhLXIHXLPIHPH$LT$L\$H\$L|$ Ld$(Ll$0LLT$8LL\$@HH\$HLL|$PLLd$XLLl$`HHD$hHHD$pHHD$xHH$L$LL$HH$H`H$HH$HH$HH$HxH$HpH$+LHh[A\A]A^A_]fff.UHAWAVAUATSH HLLHLLLLH8HH0HH(HH HHHExHHEpHHEhHHE`HHEXHHEPHHEHHHE@HHE8HHE0HHE(HHE HHEHHEHHH}HuHUHMLELMHHMHHUHHuHH}LLxLLpHHhHH`HHXHHPHHHHH@HH8HH0HH(H H H(HH0HLLLLHLLL8LHDžXHDž@LILLILLILL IL L(IL(L0IL0L8IL8L@IL@L]IL]L]IL]L]IL]L]IL]L]IL]LILL]MILhLhIL`L`HHIM)ILHHL]MILxLxILpLpHPIM)ILHPL]MLLILLHXIM)ILHXL]MLLILLH`IM)ILH`L]MLLILLHhIM)ILHhL]MLLILLHpIM)ILHpL]MLLILLHxL)HHHxHHHHHHHHHHH8H=%H=aH H<WHH*HH HHHGH\HqHHsH088xX(HHHgHTHHuH6H5HPHuY  H5HHHHuLELMLUIL]IH]HLHHLHLHLMIL4$LLT$LL\$HD$<HH92HH8#E6'L HH HH5SH=LLLHL5qL=2L%#L-<HHNHxHpHpH<HhHH`HEHXHEHHPHEHHHH@HH8H@H0HH(HXH HHPHHHHHHH@HHH8LIH0H$HHD$HHD$HHD$HHD$ H HD$(HHD$0LT$8L\$@L(LT$HH\$PLt$XL|$`Ld$hLl$pLxL\$xHpH$HDŽ$<HDŽ$qE(HH}HuHMHHUHLEILL@HHHL$HD$H ;HLH5H}LEILMILUIL]IHHLHLHLHLMIL4$LLT$LL\$HH\$XFHH@HtHH@HzHH@HHH@ H.HH@H\HH@HHH@ HHH@(HHH@0HHH@8HHH@@HXHH@HHHH@PHHH@`HHH@hHHH@pHHH@xHHHHHHHHHH5HHHHHH H@wH@H@H@ CH@(oH@0sH@87H@@CH@H_H@PH@XH@`H@hH@pH@x?HHH8 HH8JHH8 0HH82HH8(#HH8HH}H(HHUHHHHHIH H}H8HHuHHHHLHLLpHMHH < H6HcH}HMHHUHHuHLEILMIHHHH$薪HH9+H=mH5HE HEf.HHHH8cH=6HXHH="uH=dHH}HMHH@HHHHHIH H HhH=H=H UH~H5LpL L:HwL]H]HLuIL}ILeILmIHHHHxHHHpH(HHhH0HH`H@HHXHMHPHHHHpH@HHHH8H@H0H8HHH(HxHHHH HhHHHHHXHHHHHHMH HHHHHHHHHHHHHUHHHHHHHHUHiHHHHHHHLHHHLHLLMLMLxL$HpH\$LhLt$L`L|$LXLd$ LPLl$(L(L\$0L L\$8LL\$@LL\$HLL\$PLL\$XL0L\$`LL\$hLL\$pLL\$xLL$LL$LL$LL$LL$L$XH=H=HH*HHH-HHgBXj\Z*H=HH5H MLH=HL )LbX\LH LHL]HHLILILHLHHLML<$LL\$HH\$LLt$Ld$ LT$(貘HMH H+ H MH=H=H=H=|H5^H LHHH=SL LLH]LILILpLPIML`HpHHILLeHhHH`HxHXH`HHPHXHHHPHHH@HpHHHH8HhHHH0HH(LHHL MHpH$L(Lt$Ll$LhL|$Ld$ L@Ld$(L8Ll$0HD$8H0HD$@H HD$HLT$PL\$XzH=MHH8(H=iH=?UH=HH*HHH<HHvqXy\iYHH (HQH5H=KL\LMLUL]IH]HLLxIMLLpIMLLhIMLHHXILL@IHH8HHHHHHHHLHLHLHHLMML,$LLT$Lt$LL\$HH\$ HD$(HHD$0LLt$8LL|$@LLd$HLLl$PHHD$XqH=WHH+H dH5H=.LLMLULIH]HLuIL}IL@IL8IHH HHHHHxHHHHHHHHHHHpHHHMHHHEHHxHHHpHpHhHPH`HhHHXH`HPHXHHHHLH@LH8LL0IML<$Ld$Ll$LLT$LL\$ HH\$(LLt$0LPL|$8LxLd$@LLl$HL@LT$PLHLT$XLpLT$`HD$hH8HD$pH0HD$x踟,H=gHH8(H=H=Y(o$H=HH*HHHVHH+X\s !H=qTX\\L<HEHHXHHH;XOHH@HHM\HH0HHHwH=FHH bHH5H=5L^L ?L@LHL5L=L%L-HHXHHEHHEHHHEHHHEHHHEHHHEHHEHHH0HHH8HHH(HHH@HHHHHHHHHHHHHHHHHHHHxHHHpHHLhIHL`IHH$HpHD$HxHD$HHD$HHD$ HHD$(HHD$0HHD$8HHD$@HHD$HHhHD$PH`HD$XLT$`L\$hH\$pLt$xL$L$LL$L$LL$HH$LL$LL$H=\H=.HH}H(HHUHHHPHHPIH bH}H8HHuHHHHHLHH@LL@<-HMH=8H= GHH HHHHHHHHHHHHH( HH8(H=H=40H=PH[HHNH=HH*HHHgHHHH.X\,$HH8 i H=[H=WgX?\/OH xHH jHMHUHHuHLEILMILUIH HHHHLMML L$mH HH5H=LL +LL]HIL}LeILmHHMHHHHH@HH HLHLHLLHLLLMLLMLL<$LL|$LL|$LL|$LL|$ LL|$(LL|$0LT$8L\$@H\$HHD$PLg; 4HEf.HHW f.'fH~HH1fHnWPHEf.HE'HEfH~HH1fHnHPf.HPHHH*PPf.PHH*HE\ `Y f./HHH=  HlHEHHXHHH;XOHHMHH8\HH8H}HHpHH}H8HH8HHHHHIHH*1Qf.JD\fH~HH1fHn2|H5H \gYH}H0HH6fH~HH1fHnY|I aY f.\HHHH8HH8$H= ExHH HH5H=LL LLHHHHH]LuLLxIMLLpIMLHpHhILLHhH`ILL0IH`H8HHXHHPLHHLH@LHhL8IL`L0ML<$HD$HpHD$L@L|$LHLd$ LPLl$(HXHD$0H8HD$8H0HD$@LT$HL\$P*LCL H H}HHXHHHLhHIHL`HILH(LL(L$$~H= HH8(H=*H=HH*HHWH|HaH>H=L \H=}H fHGH5L)LL;H,L5eL=L%L-HH HH HH HH<HH\HHMHHMHHHMHHHHHH@HH HHHHHHHHHHHLLLLL$LLT$LLT$LLT$LLT$ LLT$(LLT$0L\$8H\$@LL\$HLt$PL|$XLd$`Ll$hHH\$pLLt$xLL$HDŽ$<HDŽ$跥HHHAHHHAHVHHAHHHA HHHAHpHHAHHHA HHHA(HjHHA0H(HHA8HHHA@H|HHAHHHHAPH8HHA`H6HHAhH HHApHHHAxHpHHH+HHHHHHIHHHHHH@RH@H@H@ H@(H@0H@8H@@H@HH@PFH@X:H@`nH@hBH@pH@xHEEH [A\A]A^A_]ÐUHAWAVAUATSHHLLHLLLLHHHHHHExHHEpHHEhHHE`HHEXHHEPHHEHHHE@HxHE8HpHE0HhHE(H`HE HXHEHPHEH}HuHUHMLELMHEHPHEHXHMH`HUHhHxHpHpLxLhLL`HHXHHPHHHHH@HH8HH0HH(HH LLLLHLLLLL`IL`LhILhLpILpLxILxL]IL]L]IL]L]IL]L]IL]L]IL]LILLILLI; uH H}HxHHxHHHHHHHIH TH*HHHHQHPH8HH8JH0H8HH*H8HEHHHNHGH;H3Hx'HHMH<Wf.HHMH<WHHM HHM\   f.WH8EH8Y f.o^_H8W ?f.H&HMH<WH HM HHM\  f.WH8AH8Yf.^H8HlHH_ H0H8HH8HH*HP^H8f.@H8@@HXHH*HXHhH}HMHHhHHH8HH8I'H (H}HUHHpHH0HHL0H(LL($ӲHMHMH(HH HHH HH}HMHHxHHHHHI裶HEH(H8`WHEHEHEf.6H=+HEPHHEH LL HH}HuHXL8LHHLIH$LT$L\$H\$Lt$ UHXHPYH@HH9d2HH8nHH82HH8yj[HH*HH H(HHHHHHHH(HH-H HHXf.QKHH}H`HHUHHHHHIگHEHHHHH;ZHXHHxYHHhXHHMHHHuHHEEH[A\A]A^A_]@UHAWAVSHHE0LU(L] H]LuH}HuHUHMLELMLuH]L]LUHEHEHHEHEHHEHEH8rHEHEf. HEHHEHEf. HEHWHEf. HEHWHEf. HEHWHEf. HEHWHEf. HEHWHEf. HEHHEHEf. HEHHEH8/HEH8#* EE HH*WHHHEHEHEYHEHE\um^ 1A9  !HEHEYX HEH  HEHxH HHEH@HHE@HE@HE@HE@  HE@(8HE@0HE@8HE@@HE@HHE@P HE@XHE@`HE@hHEY XH=y:HE f. WHEf. H9H=v;HE Hf.HEf.6 HEHeH=*5 \HEY f. HEHfHEHEf.E?HE f.%HE f. HEHgHEHEf.=7HEf.@HEf.2 HEHhHE f.WHEf.HEx'HEfH~HH1fHnxxHEfH~HH1fHnYf. HEHHEH8d/HEH8nrcTHEH8/HEH8##H=HE 2f.HEf.H=KH5$H-H >LL HLLkHLL5ML}AL}AY #\ Y \{ Y \L}A\6F\V6\FL}L<$HD$LT$L\$H\$ Lt$( Y HX Y $XXXtsH=H5WH`H LJL SHLLH]LuL}H$Lt$L|$HD$LT$ L\$(pH=0W \ MMf.Eh$EfH~HH1fHnhh Yf.0v \~YXHEW   [\ KMMf.E`$EfH~HH1fHn``H=> f.XXXf.sPfPPgHH* HEHE\YXBHEHE\YX "HEHEf.HEHHEHHHEHEHEf.HE@HE@@HEH=0HE _f.QHEf.M;H=L:.\HEY f.HEHEH H=HEH@ HEH@HHMHAHE@HE@HE@ HE@ 8HE@(HE@0HE@8HE@@HE@H HE@PHE@XHE@`HE@hEEH[A^A_]UHAWAVSHXHE8LU0L](H] LuL}WH}HuHUHMLELML}LuH]L]LUHEHEHEHEf.h`HEX'HEfH~HH1fHnXXh^`YHEHEf.WHH*HEHE\YHEHE\^HEXHEX f.P'fH~HH1fHnPPWEHEf.HEH'HEfH~HH1fHnHHxEf.xE@x@@WEHEf.HE8'HEfH~HH1fHn88xEf.xE0x00^ۿEοMYMHE^HE^Y\QYHEHEf.'fH~HH1fHnsWHH*YHE\XQ9HE\X)HEXѾ^ѾѾHEHE HE\ YXHEHEHE HE\ HE(HE\(^HEX ^^HEHE\YXe MHE\MMf.E($EfH~HH1fHn((WHE\xxf. x'xfH~HH1fHn f.``7HH* <D\,^X $HEH'Wf.WHH*HEHE\YHEHE\^HEXHEXɼ f.'fH~HH1fHnWEHEf.HE'HEfH~HH1fHnxEf.xExWEHEf.HE'HEfH~HH1fHnxEf.xEx^EغMYMHE^HE^Y\QYHEHEf.'fH~HH1fHnW vHE\X n  VHE\X FHEX  ^  HE޹HEHE\YX ֹHEHEHEHE\^HEHE\YX  HE\MMf.E$EfH~HH1fHnW5HE\xxf.x'xfH~HH1fHnf.HEH WHEf.HE'HEfH~HH1fHnWHEf.HE'HEfH~HH1fHnf.(WHH*HEHE\YHEHE\^HEXHEXr jf.X'CfH~HH1fHnWEHEf.HE'HEfH~HH1fHnxEf.xExWEHEf.HE'HEfH~HH1fHnxEf.xExWõ^pMpYpHE^ ^HE^NY\x6Mf.xExQY HEHEf.'fH~HH1fHnĴW HE\X  a HEHE\XX } = -^ - -f.%UW Df. 5HE HEHE\YX@HEHEf.HEHEHEHEHEHE\^HEHE\YXnHEH8W BHE\MMf.E$EfH~HH1fHnWHE\xxf.xxp'xfH~HH1fHnppxf.UUP@HEHEf.{jHEHEHE\YXME f.EẖhhrHEHEHE\YXMEf.uE`U``=W %HE\MMf.EX$EfH~HH1fHnXXWаHE\xxf.PxH'xfH~HH1fHnHHPf.883#HE f.HE@@@ԯHEf.įHE888HEH87WHH*HEHE\YHEHE\^HEXHEX9 1f.0' fH~HH1fHn00WEHEf.HE('HEfH~HH1fHn((xEf.xE x  WEHEf.HE'HEfH~HH1fHnxEf.xExe^UEHMYMHE^.HE^Y\QY.HEHEf.'fH~HH1fHnHE\XɬHE\XHEXqa^aaHE QHEHE\YXIAA@HEHEf.HEHEHEHEf.5HEHEHEHEHEHEqWf.0HEHEHEHEHEHEHEHEHEHEHEHE$HMHX[A^A_]ÐUHSHhHE(LU L]H]H}HuHUHMLELMH]L]LUHEHEHHEHEHHEHEHHEHEHHEHEHHEHHEHHEHHEHHEHHEHWHPH;EH?HMH<_H&HMH<H HMHHM f.nHHMHөHM f.+HEHHHMHHMHHHHuHMH<H\HMHLHMf.eH6HMH&HMf.+HEHHHMHHMHHHH¨HHYHEHHEHHH;EHHMH< HEHH^HMH<HEHMHHEHH"HMH<EWHHM HHM\ f.HܧHMHHħHMHHHHHEH8IHEH8H=vyEHEH8H=WEHEH8H=H5$)EHh[]fDUHHHEIH}HuHUHMLELMHEHEHHEHEHHEHEHMLH)HHHMHEHHEHEHHEHEHMI)ILHMHEHHEHEHHEHEH8 EyHEHHMDHEHHMDHEHHEH HH;E WHEHHHHѥH-HEHĥHH;E{HH HMHHMHHMYH}H vHMHHM^ mX aHJHH=tH9HMX0H!HMHHHLHEHMHHHuHUHEHHH}HHLMH}HHMvHMH9E EHEHHEHoHhH;E`HWHMHGH @HMHHM Q^H HMHHHLHEHMHHHuHUHEHHH}HHLMHxHHxuHMH9t EHEHHEHuHnH;EwH]HMfH~HH1fHnH6H /HMHHM Q^HHMHHHxHEHHEHעHТH;EWӢHEHHEHHHHH;EHH }HMHHMHEHHfHMYHNH GHMHHM^ FX :H#HHmHHM X HHHԡEEHĐ]fff.UHAWAVAUATSHHLLHLLLLHHExHHEpHHEhHxHE`HpHEXHhHEPH`HEHHXHE@HPHE8HHHE0H@HE(H8HE H0HEH(HEWH HH}HuHUHMLELMH HMH(HUH0HuH8H}L@LxLHLpHPHhHXH`H`HXHhHPHpHHHxH@HH8HH0L(L LLHLLLLLxILxL]IL]L]IL]L]IL]L]IL]L]IL]L]IL]L]IL]L]IL]L]IL]LILL IL L(IL(L0IL0LpMLLILLHPIM)ILHPLpMLLILLHXIM)ILHXL]MLLILLH`IM)ILH`L]MLLILLHhL)HHHhHf.zHH8H=qH(H}HMHHxHHHHHIzE `WHǝHEHHHÝH؝H՝H@HHHPHH8cH=7蚇HHHHH;/WHyH0HfHHYHEHHH;H4H;H HMfH~HH1fHnHHMH<BH؛HMH<)HHMH<(HHMHHM\H~HMH<(HeHMHUHM\|H ;HUH<Wf.H$HcH5H5H}H<Wf.$HcHHHuHH=z)Wf.)HtHMHH=H-W f.H6HMH~W šf.'fH~HH1fHnWf.HHMHH8HHlHHMH<1HlHMH<WHPHMH3HMʙY™ "\ H@HHHHH;HϘH HHHhYQHH0 X HH _HHH`YH@HHWH0 X HHpHH9HHHHH HHMH<HHMH<Wf.kHHHyHH kHUH +fH~HH1fHn^H1HMH="HHM f.&HHMŗH֗Hח{HHMH<W ~f.HHHHH zHUHҖ^:H[HMH=G"H:HM f.&HHMHHWHʖHHHH HUH f.'pfH~HH1fHnWf. H)HnHHa!HH*HHf. >H ΑH@HHH@HHH0HH5{HH}HMHHxHHHHHI?rH=tHAHMH HH9HH8dH=<H}H?HH?H2H;@H=HHx~HHHH={~E H.HHHH;/WHH(HHHvHHfH~HH1fHnYOOGH@H8HpHHXHHHHPHHH@H0HLILHHHHLILLMLL$IHH9 E~ H=HHHH0HHHHHIs \ W fH~HH1fHn^  OHHHH8cH=5H5_l|H=G WH2HHБphxH=+ב?HHMHHIH=qWHH;>HHMHHMHHMHH yHUHH=MHHH-HHEHHUHH H HUeH HUH H oW >\ N & f. zHH8dfH=HH0̏ ̏zH=uzH=ҏYz f.hW e͏XHHHݏHHHHJHM  iH2HM Qf.cHHMHHM\/HHMH؎HxHŎHMH^HHMHHM\̎HHMHuHxHbHMHHH8dH=,H54xH=)HHMH;ҍHHHHYq yY iXXݍHHY Y \.HHY \ H@H8H=LH5HvH0HH(HHHHLIeH8H H eH@H HHqHdH;HH !HHHhH+H HHHMH ތHHH`YH@HHދH HHpHH9HHHHH-HpHHXHHHHPHHH@H HLILHxHHHxLpILpLhMLhL$HH9d EH=9HjH(HHHHHXHHXIjlH=H$̊H0HHHHHPHHPIlH=HֆH HHHHHHHHHIkH=WHH9AfH~HH1fHnH HH0HH@HHL@IbHH* ӉY [XO OYYXYw\ H}HMHH9HHm}HF}HH9}EEH8[A\A]A^A_]UHAWAVAUATSHxHEhLU`L]XH]PLuHL}@Le8Lm0HHE(HHE HHEHHEHHH}HuHUHMLELMHHMHHUHHuHH}LxLpLhL`HXLPLHLL@LMILMLMILMLxM LLILLL`IM)IML`LMM LLILLLhIM)IMLhLMM LLILLLpIM)IMLpLxM IL(L(IL L LUIM)IMLULxM IL8L8IL0L0LUL)HILUHEH8'HEHHxH;MHxHH-HHzHzH;HHuHxH H zH ozHxH H+ nzHH `zHHRzHH(HHUHHH .zH5'zH(HHuHHHHHHI%VHH /uHxHH+yHHyHH5yHH(HHuHHHyLyL(LLEHIHHLLUHH tHxHHHHxHHH5yHH(HHuHHHxHHLxL(LLEHIHHLLTHxHHxHxHEHHxHEHHHxHEHHsxHPHH:xHxHHPHHxHHHHPHH-H^xHWxHxH;HxHH 6xH)H ,xHHHH#xHPHHHwHwH;WHxHHwHhwwwwHwHHwHwH wH;HvHMHHvHvH dwHHHhHvH GwHHHhY wX vHvHHxv_HvHHvHWvHPvH;HHxHfHpH8HxH:HpH8HxHHxHHEH8cH=30HhH0HX&H=*HuH6HMHM ,z&HMH9d($H=/U&H}H?HHHH>$H;>H;H=H=}/H >HM& H>HH=H=,%H=r/%H}H?HHH=H=H;H=H=.H=HMr%Hq=HHd=H=,E%nHEH8XHEHHMHH9H&=H==+H=N)HEH0HEHE$ H[A\A]A^A_]ÐUHAWAVAUATSHHLLHLL}xLepLmhHHE`HHEXHHEPHHEHHHE@HHE8HHE0HHE(HHE HHEHHEH}HuHUHMLELMHEHHEHHMHHUHHuHHxLLpLLhHH`HHXHHPLHL@L8L0H(L LLLL]IL]L]I;/HEH8## HEH8H=H,"H=M,"H=],s"H=w,_"H=,K"H=,7"H=,#"H=-"H=+!H=,!H=-HMH1HMHHMH LEMLMM LxMLpAL]A L$!HMH9dH=,h!H}H?HHk9H^9H;=H=,HC9HM!|H&9HH9H=' xHEH8H=@,HE tHEH8H=,HEH0 HuH>pHEH8H=+Q lHEH8H=+, hHEH8H=, dHEH8PH=2,H=\,`H=i,\H=,XTHEH8<H=,H=,PmH=,LYHHEH8H=,H8H0*DHEH8(H=,H8H0H8H@HEH8H=,)HEH8,HHMH+HHMHHH )HEHHEH(H(HMH;HEH(H-HMYH(H-HM X HEHH (HH (HEHH |(HH r(HS(HHF(fEYHHMH HEHHHMHH(H= (H'HEH'H'H;'VHEH'H-HMYH'H-HM X H'HH|'HEH8 E~HV'HHa'HEHHEHO'H('H!'HMH;1HEH'H-HMYH&H-HM X HEH&HH-HMYH&HH-HM X HEH&HH-HMYHc&HH-HM X HEH6&HH-HMYH&HH-HM X H%HH%EE]ffffff.UHH}HuHUHMLEHMH9 EHEH8HEH8;H%H%HEH8,HHMH+HHMHHHQ%HEH8,HHMH+HHMHHH%HEHHEH$H$HMH;uH$H-HMH$H-HMHEHH $HH $HEHH $HH $Hw$HHj$wEHHMH HEHHHMHH9$H=.$H$HEH$H#H;#EH#H-HMH#H-HMH#HH#HEH8 EH#HH#HEHHEH#H]#HV#HMH;HB#H-HMH,#H-HMH#HH-HMH"HH-HMH"HH-HMH"HH-HMH"HH-HMH"HH-HMHn"HH-HMHR"HH-HMH6"HH-HMH"HH-HMH!HH-HMH!HH-HMH!HH!WEE]UHWH}HuHUHMLEE!HMH9EEHEH8HEH8_Hf!Hc!HEH8,HHMH+HHMHHH!HEH8,HHMH+HHMHHH HEHHEH H HMH;H H-HMH H-HMY { X o HEHH i HH _ HEHH Y HH O H( HH c EEEHHMH HEHHHMHHH=HHEHHH;YHH-HMHuH-HMY nX bHKHH>HEH8HHH2HEHHEH HHHMH;IHH-HM HH-HMY XHHH-HM HHH-HMY XHbHH-HM HFHH-HMY XH&HH-HM H HH-HMY XHHH-HM HHH-HMY XHHHEEEE]fUHH}HuHUHMHMH9HEH8 EnHEH8HEHHMHH:H3HEHEHHEH HEH8HH;щUHH;щUċE=QHEHH-HMYHH-HMHEHH oHH eWElHHMH HEHHHMHH4H=)HHEHHH;MHEHH-HMYHH-HMHHHHEH8 EH~HHHEHHEHoHPHIHMH;MHEH-H-HMYHH-HMHEHHH-HMYHHH-HMHEHHH-HMYHHH-HMHEHyHH-HMYH]HH-HMHEH9HH-HMYHHH-HMHHHEE]ÐUHH H@BH*H}EEKHEfHn( fbf( f\f|M^HEEH ]Ð%V%X%Z%\%^%`%b%d%f%h%j%l%n%p%r%t%v%x%z%|%~LAS%hhh,h9hYhuhhhhhhxhnhdh!Zh5PhHFhZ,<Q???0C0E0C0ENeeds at least 5 input argumentsx must be a column vectorl must have same size as xu must have same size as xnbd must have same size as xShould have 2 or 3 output argumentsx should be of type double! Converting nbd array to integers mexFunction/Users/srbecker/Repos/lbfgsb_C/Matlab/lbfgsb_wrapper.cnbd != NULLSizeof(int) is %d bits, sizeof(integer) is %d bits Nbd is of type %s Nbd array not doubles or type int64! factr must be >= 0 pgtol must be >= 0 g != NULLwa != NULLiwa != NULLFor this f(x) feature, need more input aguments Error trying to create RHS[2] fevalError with [f,g]=fcn(x) : g wrong size Error with [f,g]=fcn(x) : g wrong size (should be column vector) [f,g]=fcn(x) did not return g as type double Did not expect more than 5 outputs At iterate %5ld, f(x)= %5.2e, ||proj grad||_infty = %.2e ITERATION %5ld Nonpositive definiteness in Cholesky factorization in formk; refresh the lbfgs memory and restart the iteration. Singular triangular system detected; Bad direction in the line search; ys=%10.3e -gs=%10.3e BFGS update SKIPPED Nonpositive definiteness in Cholesky factorization in formt; ascend direction in projection gd = %.2e The initial X is infeasible. Restart with its projection This problem is unconstrained At X0, %ld variables are exactly at the bounds Subnorm = 0. GCP = X. CAUCHY entered Cauchy X = %5.2e There are %ld breakpoints Piece %ld --f1, f2 at start point %.2e %.2e Distance to the next break point = %.2e Distance to the stationary point = %.2e Variable %ld is fixed GCP found in this segment. Piece %ld --f1, f2 at start point %.2e %.2e -------------- exit CAUCHY ----------- Variable %ld leaves the set of free variables %ld variables leave; %ld variables enter %ld variables are free at GCP iter %ld ---------------SUBSM entered--------- Positive dir derivative in projection Using the backtracking step ----------------- exit SUBSM -------------- * * * RUNNING THE L-BFGS-B CODE Machine precision = %.2e N = %10ld M = %10ld L =%.2e X0 =U =LINE SEARCH %ld times; norm of step = %.2e X =G = * * * Tit = total number of iterations Tnf = total number of function evaluations Tnint = total number of segments explored during Cauchy searches Skip = number of BFGS updates skipped Nact = number of active bounds at final generalized Cauchy point Projg = norm of the final projected gradient F = final function value N Tit Tnf Tnint Skip Nact Projg F %5ld %5ld %5ld %5ld %5ld %5ld %6.2e %9.5e X = %.2eF(x) = %.9e %ld Matrix in 1st Cholesky factorization in formk is not Pos. Def. Matrix in 2nd Cholesky factorization in formk is not Pos. Def. Matrix in the Cholesky factorization in formt is not Pos. Def. Derivative >= 0, backtracking line search impossible. Previous x, f and g restored. Possible causes: 1 error in function or gradient evaluation; 2 rounding errors dominate computation. Warning: more than 10 function and gradient evaluations in the last line search. Termination may possibly be caused by a bad search direction. Input nbd(%ld) is invalid l(%ld) > u(%ld). No feasible solution. The triangular system is singular. Line search cannot locate an adequate point after 20 function and gradient evaluations. Previous x, f and g restored. 2 rounding error dominate computation. Cauchy time %.3e seconds. Subspace minimization time %.3e seconds. Line search time %.3e seconds. Total User time %.3e seconds. ,,Xa DDD PP0V`|PPzRx zRx zRx zRx zRx zRx zRx zRx LV`jt~    2MbP??? !`@___stack_chk_guardQq@dyld_stub_binderq@___assert_rtnq @___stack_chk_failq(@_clockq0@_mxCreateDoubleMatrix_730q8@_mxCreateDoubleScalarq@@_mxDestroyArrayqH@_mxDuplicateArrayqP@_mxFreeqX@_mxGetClassNameq`@_mxGetDataqh@_mxGetMqp@_mxGetNqx@_mxGetNumberOfElementsq@_mxGetPrq@_mxGetScalarq@_mxIsDoubleq@_mxIsInt64q@_mxMallocq@_mexCallMATLABq@_mexErrMsgTxtq@_mexPrintf_mexFunction f0 8 0$ <d)d:fT. q$ $0N0. }$ $ N . $ $0N0dddfT. $ $N.$+$$$)3N)33& 0@& 0F& 1Q& 1\& 1g& 1r& (1~& 01& 81& @1& H1& P1& X1& `1& h1& p1& x1& 1& 1 & 1& 1"& 1.& 1:& 1F& 1R& 1_& 1l& 1y& 1& 1& 1& 1& 1& 2& 2& 2& 2& 2& (2 & 02& 82)& @27& H2E& P2S& X2a& `2o& h2}& p2& x2& 2& 2& 2& 2& 2& 2& 2& 2& 2& 2-& 2<& 2K& 2Z& 2i& 2x& 2dd~dfT.W$W$ N .b$b$0N0.q$q$N& 0& 0"& 00& 06& 3D& 3P& 3[& 3f& 3q& (3|& 03& 83& @3& H3& P3& X3& `3& h3& p3& x3& 3& 3 & 3& 3(& 36& 3D& 3R& 3`& 3o& 3~& 3& 3& 3& 3& 3& 3& 4& 4& 4& 4dddfT.>$F$ N . y$ $`N`.~$$N.$$`N`.$$PNP.@$@$pNp.$$N.0$0$PNP.$$N.$$N.0$0$N& 0& 0& 4& (4& 04& 84& @4& H4 & P4& X4& `4*& h45& p4@& x4K& 4V& 4a& 4m& 4y& 4& 4& 4& 4& 4& 4& 4& 4& 4& 4& 4 & 4 & 5" & 50 & 5> & 5O & 5^ & (5m & 05| & 85 & @5 & H5 & P5 & X5 & `5 & h5 & p5 & x5 & 5 & 5 & 5 & 5 & 5 & 5% & 5/ & 5: & 5E & 5Q & 5] & 5i & 5u & 5 & 5 & 5 & 6 & 6 & 6 & 6 & 6 & (6 & 06 & 86 & @6 & H6 & P6 & X6& & `62 & h6> & p6H & x6R & 6^ & 6k & 6z & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 7 & 7 & 7- & 7: & 7G & (7T & 07ddb dj fT.P $P $N. $$N. $$N. $$N & 87 & @7 & H7 & P7 & X7dd d* fT.PZ $Pa $N.  $ $tNt & 1 & `7 & h7 & p7 & x7 & 7 & 7 & 7 & 7 & 7dd dfT. 5$ ?$@N@.n$$PNP.0x$0$`N`.$$N& 7& 7& 7& 7& 7& 7& 7& 7& 7& 7 & 7& 8!& 80& 8<& 8H& 8U& (8a& 08m& 88}& @8dddfT.P$P$kNkd   $Wb&q.6 ;CKS@Za0hpx0PP  0P 0 0 0 0  0 0 0% 0+ 11 1< 1G 1R 1] (1i 01u 81 @1 H1 P1 X1 `1 h1 p1 x1 1 1 1 1  1 1% 11 1= 1J 1W 1d 1q 1~ 1 1 1 2 2 2 2 2 (2 02 82 @2" H20 P2> X2L `2Z h2h p2v x2 2 2 2 2 2 2 2 2 2  2 2' 26 2E 2T 2c 2i 3w 3 3 3 3 (3 03 83 @3 H3 P3 X3 `3 h3  p3 x3# 31 3? 3M 3[ 3i 3w 3 3 3 3 3 3 3 3 3 3 4 4 4 4+ 47 (4D 04M 84T @4\ H4e P4q X4{ `4 h4 p4 x4 4 4 4 4 4 4 4 4 4 4 4, 49 4F 4T 4b 4p 5~ 5 5 5 5 (5 05 85 @5 H5 P5  X5 `5! h5, p5; x5F 5O 5Y 5c 5m 5w 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6- 6; (6F 06O 86X @6b H6n P6y X6 `6 h6 p6 x6 6 6 6 6 6 6 6  6 6  6) 62 6< 6F 6P 6Z 6d 7o 7{ 7 7 7 (7 07 87 @7 H7 P7 X7 `7 h7  p7 x7 7* 73 7= 7K 7W 7c 7o 7| 7 7 7 7 7 7 7 7 8 8 8 8 8! (8- 089 88I @8W dr 0;CKbkx@ /Users/srbecker/Repos/lbfgsb_C/Matlab/lbfgsb_wrapper.c/Users/srbecker/Repos/lbfgsb_C/Matlab/lbfgsb_wrapper.o_fakePrintf_isInt_mexFunction/Users/srbecker/Repos/lbfgsb_C/Matlab/../src/lbfgsb.c/Users/srbecker/Repos/lbfgsb_C/Matlab/lbfgsb.o_setulb/Users/srbecker/Repos/lbfgsb_C/src/lbfgsb.c_mainlb_mainlb.word_c__1_setulb.ld_setulb.lr_setulb.lt_setulb.lz_setulb.lwa_setulb.lwn_setulb.lss_setulb.lxp_setulb.lws_setulb.lwt_setulb.lsy_setulb.lwy_setulb.lsnd_mainlb.i___mainlb.k_mainlb.gd_mainlb.dr_mainlb.rr_mainlb.dtd_mainlb.col_mainlb.tol_mainlb.wrk_mainlb.stp_mainlb.cpu1_mainlb.cpu2_mainlb.head_mainlb.fold_mainlb.nact_mainlb.ddum_mainlb.info_mainlb.nseg_mainlb.time_mainlb.nfgv_mainlb.ifun_mainlb.iter_mainlb.wordTemp_mainlb.time1_mainlb.time2_mainlb.iback_mainlb.gdold_mainlb.nfree_mainlb.boxed_mainlb.itail_mainlb.theta_mainlb.dnorm_mainlb.nskip_mainlb.iword_mainlb.xstep_mainlb.stpmx_mainlb.ileave_mainlb.cachyt_mainlb.itfile_mainlb.epsmch_mainlb.updatd_mainlb.sbtime_mainlb.prjctd_mainlb.iupdat_mainlb.sbgnrm_mainlb.cnstnd_mainlb.nenter_mainlb.lnscht_mainlb.nintol_c_b7linesearch.c/Users/srbecker/Repos/lbfgsb_C/Matlab/linesearch.o_lnsrlb/Users/srbecker/Repos/lbfgsb_C/src/linesearch.c_dcsrch_dcstep_lnsrlb.c_b14_lnsrlb.c_b15_lnsrlb.c_b16_c__1_lnsrlb.c_b17_lnsrlb.i___lnsrlb.a1_lnsrlb.a2_dcsrch.fm_dcsrch.gm_dcsrch.fx_dcsrch.fy_dcsrch.gx_dcsrch.gy_dcsrch.fxm_dcsrch.fym_dcsrch.gxm_dcsrch.gym_dcsrch.stx_dcsrch.sty_dcsrch.stage_dcsrch.finit_dcsrch.ginit_dcsrch.width_dcsrch.ftest_dcsrch.gtest_dcsrch.stmin_dcsrch.stmax_dcsrch.width1_dcsrch.brackt_dcstep.p_dcstep.q_dcstep.r___dcstep.s_dcstep.sgnd_dcstep.stpc_dcstep.stpf_dcstep.stpq_dcstep.gamma_dcstep.thetasubalgorithms.c/Users/srbecker/Repos/lbfgsb_C/Matlab/subalgorithms.o_active/Users/srbecker/Repos/lbfgsb_C/src/subalgorithms.c_bmv_cauchy_hpsolb_cmprlb_formk_formt_freev_matupd_projgr_subsm_c__11_c__1_active.i___active.nbdd_bmv.i___bmv.k_bmv.i2_bmv.sum_cauchy.i___cauchy.j_cauchy.f1_cauchy.f2_cauchy.dt_cauchy.tj_cauchy.tl_cauchy.tu_cauchy.tj0_cauchy.ibp_cauchy.dtm_cauchy.wmc_cauchy.wmp_cauchy.wmw_cauchy.col2_cauchy.dibp_cauchy.iter_cauchy.zibp_cauchy.tsum_cauchy.dibp2_cauchy.bnded_cauchy.neggi_cauchy.nfree_cauchy.bkmin_cauchy.nleft_cauchy.f2_org___cauchy.nbreak_cauchy.ibkmin_cauchy.pointr_cauchy.xlower_cauchy.xupper_cmprlb.i___cmprlb.j_cmprlb.k_cmprlb.a1_cmprlb.a2_cmprlb.pointr_formk.i___formk.k_formk.k1_formk.m2_formk.is_formk.js_formk.iy_formk.jy_formk.is1_formk.js1_formk.col2_formk.dend_formk.pend_formk.upcl_formk.temp1_formk.temp2_formk.temp3_formk.temp4_formk.ipntr_formk.jpntr_formk.dbegin_formk.pbegin_formt.i___formt.j_formt.k_formt.k1_formt.ddum_freev.i___freev.k_freev.iact_hpsolb.i___hpsolb.j_hpsolb.k_hpsolb.out_hpsolb.ddum_hpsolb.indxin_hpsolb.indxou_matupd.j_matupd.pointr_projgr.i___projgr.gi_subsm.i___subsm.j_subsm.k_subsm.m2_subsm.dk_subsm.js_subsm.jy_subsm.xk_subsm.ibd_subsm.col2_subsm.dd_p___subsm.temp1_subsm.temp2_subsm.alpha_subsm.pointrprint.c/Users/srbecker/Repos/lbfgsb_C/Matlab/print.o_prn1lb/Users/srbecker/Repos/lbfgsb_C/src/print.c_prn2lb_prn3lb_errclb_prn1lb.i___prn2lb.i___prn2lb.imod_prn3lb.i___errclb.i__linpack.c/Users/srbecker/Repos/lbfgsb_C/Matlab/linpack.o_dpofa/Users/srbecker/Repos/lbfgsb_C/src/linpack.c_dtrsl_c__1_dpofa.j_dpofa.k_dpofa.s_dpofa.t_dpofa.jm1_dtrsl.j_dtrsl.jj_dtrsl.case___dtrsl.tempminiCBLAS.c/Users/srbecker/Repos/lbfgsb_C/Matlab/miniCBLAS.o_daxpyRef/Users/srbecker/Repos/lbfgsb_C/src/miniCBLAS.c_dcopyRef_ddotRef_dscalRef_daxpyRef.i_daxpyRef.m_daxpyRef.ix_daxpyRef.iy_daxpyRef.mp1_dcopyRef.i_dcopyRef.m_dcopyRef.ix_dcopyRef.iy_dcopyRef.mp1_ddotRef.i_ddotRef.m_ddotRef.dtemp_ddotRef.ix_ddotRef.iy_ddotRef.mp1_dscalRef.i_dscalRef.m_dscalRef.nincx_dscalRef.mp1timer.c/Users/srbecker/Repos/lbfgsb_C/Matlab/timer.o_timer/Users/srbecker/Repos/lbfgsb_C/src/timer.c_fakePrintf_isInt_setulb_mainlb_lnsrlb_dcsrch_dcstep_active_bmv_cauchy_hpsolb_cmprlb_formk_formt_freev_matupd_projgr_subsm_prn1lb_prn2lb_prn3lb_errclb_dpofa_dtrsl_daxpyRef_dcopyRef_ddotRef_dscalRef_timer_mainlb.word_c__1_lnsrlb.c_b14_lnsrlb.c_b15_lnsrlb.c_b16_c__1_c__11_c__1_c__1_setulb.ld_setulb.lr_setulb.lt_setulb.lz_setulb.lwa_setulb.lwn_setulb.lss_setulb.lxp_setulb.lws_setulb.lwt_setulb.lsy_setulb.lwy_setulb.lsnd_mainlb.i___mainlb.k_mainlb.gd_mainlb.dr_mainlb.rr_mainlb.dtd_mainlb.col_mainlb.tol_mainlb.wrk_mainlb.stp_mainlb.cpu1_mainlb.cpu2_mainlb.head_mainlb.fold_mainlb.nact_mainlb.ddum_mainlb.info_mainlb.nseg_mainlb.time_mainlb.nfgv_mainlb.ifun_mainlb.iter_mainlb.wordTemp_mainlb.time1_mainlb.time2_mainlb.iback_mainlb.gdold_mainlb.nfree_mainlb.boxed_mainlb.itail_mainlb.theta_mainlb.dnorm_mainlb.nskip_mainlb.iword_mainlb.xstep_mainlb.stpmx_mainlb.ileave_mainlb.cachyt_mainlb.itfile_mainlb.epsmch_mainlb.updatd_mainlb.sbtime_mainlb.prjctd_mainlb.iupdat_mainlb.sbgnrm_mainlb.cnstnd_mainlb.nenter_mainlb.lnscht_mainlb.nintol_c_b7_lnsrlb.c_b17_lnsrlb.i___lnsrlb.a1_lnsrlb.a2_dcsrch.fm_dcsrch.gm_dcsrch.fx_dcsrch.fy_dcsrch.gx_dcsrch.gy_dcsrch.fxm_dcsrch.fym_dcsrch.gxm_dcsrch.gym_dcsrch.stx_dcsrch.sty_dcsrch.stage_dcsrch.finit_dcsrch.ginit_dcsrch.width_dcsrch.ftest_dcsrch.gtest_dcsrch.stmin_dcsrch.stmax_dcsrch.width1_dcsrch.brackt_dcstep.p_dcstep.q_dcstep.r___dcstep.s_dcstep.sgnd_dcstep.stpc_dcstep.stpf_dcstep.stpq_dcstep.gamma_dcstep.theta_active.i___active.nbdd_bmv.i___bmv.k_bmv.i2_bmv.sum_cauchy.i___cauchy.j_cauchy.f1_cauchy.f2_cauchy.dt_cauchy.tj_cauchy.tl_cauchy.tu_cauchy.tj0_cauchy.ibp_cauchy.dtm_cauchy.wmc_cauchy.wmp_cauchy.wmw_cauchy.col2_cauchy.dibp_cauchy.iter_cauchy.zibp_cauchy.tsum_cauchy.dibp2_cauchy.bnded_cauchy.neggi_cauchy.nfree_cauchy.bkmin_cauchy.nleft_cauchy.f2_org___cauchy.nbreak_cauchy.ibkmin_cauchy.pointr_cauchy.xlower_cauchy.xupper_cmprlb.i___cmprlb.j_cmprlb.k_cmprlb.a1_cmprlb.a2_cmprlb.pointr_formk.i___formk.k_formk.k1_formk.m2_formk.is_formk.js_formk.iy_formk.jy_formk.is1_formk.js1_formk.col2_formk.dend_formk.pend_formk.upcl_formk.temp1_formk.temp2_formk.temp3_formk.temp4_formk.ipntr_formk.jpntr_formk.dbegin_formk.pbegin_formt.i___formt.j_formt.k_formt.k1_formt.ddum_freev.i___freev.k_freev.iact_hpsolb.i___hpsolb.j_hpsolb.k_hpsolb.out_hpsolb.ddum_hpsolb.indxin_hpsolb.indxou_matupd.j_matupd.pointr_projgr.i___projgr.gi_subsm.i___subsm.j_subsm.k_subsm.m2_subsm.dk_subsm.js_subsm.jy_subsm.xk_subsm.ibd_subsm.col2_subsm.dd_p___subsm.temp1_subsm.temp2_subsm.alpha_subsm.pointr_prn1lb.i___prn2lb.i___prn2lb.imod_prn3lb.i___errclb.i___dpofa.j_dpofa.k_dpofa.s_dpofa.t_dpofa.jm1_dtrsl.j_dtrsl.jj_dtrsl.case___dtrsl.temp_daxpyRef.i_daxpyRef.m_daxpyRef.ix_daxpyRef.iy_daxpyRef.mp1_dcopyRef.i_dcopyRef.m_dcopyRef.ix_dcopyRef.iy_dcopyRef.mp1_ddotRef.i_ddotRef.m_ddotRef.dtemp_ddotRef.ix_ddotRef.iy_ddotRef.mp1_dscalRef.i_dscalRef.m_dscalRef.nincx_dscalRef.mp1_mexFunction___assert_rtn___stack_chk_fail___stack_chk_guard_clock_mexCallMATLAB_mexErrMsgTxt_mexPrintf_mxCreateDoubleMatrix_730_mxCreateDoubleScalar_mxDestroyArray_mxDuplicateArray_mxFree_mxGetClassName_mxGetData_mxGetM_mxGetN_mxGetNumberOfElements_mxGetPr_mxGetScalar_mxIsDouble_mxIsInt64_mxMallocdyld_stub_binder