#![cfg(all(not(feature = "std"), feature = "compact"))] // These are adapted from libm, a port of musl libc's libm to Rust. // libm can be found online [here](https://github.com/rust-lang/libm), // and is similarly licensed under an Apache2.0/MIT license use core::f64; use lexical_parse_float::libm; #[test] fn fabsf_sanity_test() { assert_eq!(libm::fabsf(-1.0), 1.0); assert_eq!(libm::fabsf(2.8), 2.8); } /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs #[test] fn fabsf_spec_test() { assert!(libm::fabsf(f32::NAN).is_nan()); for f in [0.0, -0.0].iter().copied() { assert_eq!(libm::fabsf(f), 0.0); } for f in [f32::INFINITY, f32::NEG_INFINITY].iter().copied() { assert_eq!(libm::fabsf(f), f32::INFINITY); } } #[test] fn sqrtf_sanity_test() { assert_eq!(libm::sqrtf(100.0), 10.0); assert_eq!(libm::sqrtf(4.0), 2.0); } /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt #[test] fn sqrtf_spec_test() { // Not Asserted: FE_INVALID exception is raised if argument is negative. assert!(libm::sqrtf(-1.0).is_nan()); assert!(libm::sqrtf(f32::NAN).is_nan()); for f in [0.0, -0.0, f32::INFINITY].iter().copied() { assert_eq!(libm::sqrtf(f), f); } } const POS_ZERO: &[f64] = &[0.0]; const NEG_ZERO: &[f64] = &[-0.0]; const POS_ONE: &[f64] = &[1.0]; const NEG_ONE: &[f64] = &[-1.0]; const POS_FLOATS: &[f64] = &[99.0 / 70.0, f64::consts::E, f64::consts::PI]; const NEG_FLOATS: &[f64] = &[-99.0 / 70.0, -f64::consts::E, -f64::consts::PI]; const POS_SMALL_FLOATS: &[f64] = &[(1.0 / 2.0), f64::MIN_POSITIVE, f64::EPSILON]; const NEG_SMALL_FLOATS: &[f64] = &[-(1.0 / 2.0), -f64::MIN_POSITIVE, -f64::EPSILON]; const POS_EVENS: &[f64] = &[2.0, 6.0, 8.0, 10.0, 22.0, 100.0, f64::MAX]; const NEG_EVENS: &[f64] = &[f64::MIN, -100.0, -22.0, -10.0, -8.0, -6.0, -2.0]; const POS_ODDS: &[f64] = &[3.0, 7.0]; const NEG_ODDS: &[f64] = &[-7.0, -3.0]; const NANS: &[f64] = &[f64::NAN]; const POS_INF: &[f64] = &[f64::INFINITY]; const NEG_INF: &[f64] = &[f64::NEG_INFINITY]; const ALL: &[&[f64]] = &[ POS_ZERO, NEG_ZERO, NANS, NEG_SMALL_FLOATS, POS_SMALL_FLOATS, NEG_FLOATS, POS_FLOATS, NEG_EVENS, POS_EVENS, NEG_ODDS, POS_ODDS, NEG_INF, POS_INF, NEG_ONE, POS_ONE, ]; const POS: &[&[f64]] = &[POS_ZERO, POS_ODDS, POS_ONE, POS_FLOATS, POS_EVENS, POS_INF]; const NEG: &[&[f64]] = &[NEG_ZERO, NEG_ODDS, NEG_ONE, NEG_FLOATS, NEG_EVENS, NEG_INF]; fn powd(base: f64, exponent: f64, expected: f64) { let res = libm::powd(base, exponent); assert!( if expected.is_nan() { res.is_nan() } else { libm::powd(base, exponent) == expected }, "{} ** {} was {} instead of {}", base, exponent, res, expected ); } fn powd_test_sets_as_base(sets: &[&[f64]], exponent: f64, expected: f64) { sets.iter().for_each(|s| s.iter().for_each(|val| powd(*val, exponent, expected))); } fn powd_test_sets_as_exponent(base: f64, sets: &[&[f64]], expected: f64) { sets.iter().for_each(|s| s.iter().for_each(|val| powd(base, *val, expected))); } fn powd_test_sets(sets: &[&[f64]], computed: &dyn Fn(f64) -> f64, expected: &dyn Fn(f64) -> f64) { sets.iter().for_each(|s| { s.iter().for_each(|val| { let exp = expected(*val); let res = computed(*val); assert!( if exp.is_nan() { res.is_nan() } else { exp == res }, "test for {} was {} instead of {}", val, res, exp ); }) }); } #[test] fn powd_zero_as_exponent() { powd_test_sets_as_base(ALL, 0.0, 1.0); powd_test_sets_as_base(ALL, -0.0, 1.0); } #[test] fn powd_one_as_base() { powd_test_sets_as_exponent(1.0, ALL, 1.0); } #[test] fn powd_nan_inputs() { // NAN as the base: // (NAN ^ anything *but 0* should be NAN) powd_test_sets_as_exponent(f64::NAN, &ALL[2..], f64::NAN); // NAN as the exponent: // (anything *but 1* ^ NAN should be NAN) powd_test_sets_as_base(&ALL[..(ALL.len() - 2)], f64::NAN, f64::NAN); } #[test] fn powd_infinity_as_base() { // Positive Infinity as the base: // (+Infinity ^ positive anything but 0 and NAN should be +Infinity) powd_test_sets_as_exponent(f64::INFINITY, &POS[1..], f64::INFINITY); // (+Infinity ^ negative anything except 0 and NAN should be 0.0) powd_test_sets_as_exponent(f64::INFINITY, &NEG[1..], 0.0); // Negative Infinity as the base: // (-Infinity ^ positive odd ints should be -Infinity) powd_test_sets_as_exponent(f64::NEG_INFINITY, &[POS_ODDS], f64::NEG_INFINITY); // (-Infinity ^ anything but odd ints should be == -0 ^ (-anything)) // We can lump in pos/neg odd ints here because they don't seem to // cause panics (div by zero) in release mode (I think). powd_test_sets(ALL, &|v: f64| libm::powd(f64::NEG_INFINITY, v), &|v: f64| libm::powd(-0.0, -v)); } #[test] fn infinity_as_exponent() { // Positive/Negative base greater than 1: // (pos/neg > 1 ^ Infinity should be Infinity - note this excludes NAN as the // base) powd_test_sets_as_base(&ALL[5..(ALL.len() - 2)], f64::INFINITY, f64::INFINITY); // (pos/neg > 1 ^ -Infinity should be 0.0) powd_test_sets_as_base(&ALL[5..ALL.len() - 2], f64::NEG_INFINITY, 0.0); // Positive/Negative base less than 1: let base_below_one = &[POS_ZERO, NEG_ZERO, NEG_SMALL_FLOATS, POS_SMALL_FLOATS]; // (pos/neg < 1 ^ Infinity should be 0.0 - this also excludes NAN as the base) powd_test_sets_as_base(base_below_one, f64::INFINITY, 0.0); // (pos/neg < 1 ^ -Infinity should be Infinity) powd_test_sets_as_base(base_below_one, f64::NEG_INFINITY, f64::INFINITY); // Positive/Negative 1 as the base: // (pos/neg 1 ^ Infinity should be 1) powd_test_sets_as_base(&[NEG_ONE, POS_ONE], f64::INFINITY, 1.0); // (pos/neg 1 ^ -Infinity should be 1) powd_test_sets_as_base(&[NEG_ONE, POS_ONE], f64::NEG_INFINITY, 1.0); } #[test] fn powd_zero_as_base() { // Positive Zero as the base: // (+0 ^ anything positive but 0 and NAN should be +0) powd_test_sets_as_exponent(0.0, &POS[1..], 0.0); // (+0 ^ anything negative but 0 and NAN should be Infinity) // (this should panic because we're dividing by zero) powd_test_sets_as_exponent(0.0, &NEG[1..], f64::INFINITY); // Negative Zero as the base: // (-0 ^ anything positive but 0, NAN, and odd ints should be +0) powd_test_sets_as_exponent(-0.0, &POS[3..], 0.0); // (-0 ^ anything negative but 0, NAN, and odd ints should be Infinity) // (should panic because of divide by zero) powd_test_sets_as_exponent(-0.0, &NEG[3..], f64::INFINITY); // (-0 ^ positive odd ints should be -0) powd_test_sets_as_exponent(-0.0, &[POS_ODDS], -0.0); // (-0 ^ negative odd ints should be -Infinity) // (should panic because of divide by zero) powd_test_sets_as_exponent(-0.0, &[NEG_ODDS], f64::NEG_INFINITY); } #[test] fn special_cases() { // One as the exponent: // (anything ^ 1 should be anything - i.e. the base) powd_test_sets(ALL, &|v: f64| libm::powd(v, 1.0), &|v: f64| v); // Negative One as the exponent: // (anything ^ -1 should be 1/anything) powd_test_sets(ALL, &|v: f64| libm::powd(v, -1.0), &|v: f64| 1.0 / v); // Factoring -1 out: // (negative anything ^ integer should be (-1 ^ integer) * (positive anything ^ // integer)) [POS_ZERO, NEG_ZERO, POS_ONE, NEG_ONE, POS_EVENS, NEG_EVENS].iter().for_each(|int_set| { int_set.iter().for_each(|int| { powd_test_sets(ALL, &|v: f64| libm::powd(-v, *int), &|v: f64| { libm::powd(-1.0, *int) * libm::powd(v, *int) }); }) }); // Negative base (imaginary results): // (-anything except 0 and Infinity ^ non-integer should be NAN) NEG[1..(NEG.len() - 1)].iter().for_each(|set| { set.iter().for_each(|val| { powd_test_sets(&ALL[3..7], &|v: f64| libm::powd(*val, v), &|_| f64::NAN); }) }); } #[test] fn normal_cases() { assert_eq!(libm::powd(2.0, 20.0), (1 << 20) as f64); assert_eq!(libm::powd(-1.0, 9.0), -1.0); assert!(libm::powd(-1.0, 2.2).is_nan()); assert!(libm::powd(-1.0, -1.14).is_nan()); } #[test] fn fabsd_sanity_test() { assert_eq!(libm::fabsd(-1.0), 1.0); assert_eq!(libm::fabsd(2.8), 2.8); } /// The spec: https://en.cppreference.com/w/cpp/numeric/math/fabs #[test] fn fabsd_spec_test() { assert!(libm::fabsd(f64::NAN).is_nan()); for f in [0.0, -0.0].iter().copied() { assert_eq!(libm::fabsd(f), 0.0); } for f in [f64::INFINITY, f64::NEG_INFINITY].iter().copied() { assert_eq!(libm::fabsd(f), f64::INFINITY); } } #[test] fn sqrtd_sanity_test() { assert_eq!(libm::sqrtd(100.0), 10.0); assert_eq!(libm::sqrtd(4.0), 2.0); } /// The spec: https://en.cppreference.com/w/cpp/numeric/math/sqrt #[test] fn sqrtd_spec_test() { // Not Asserted: FE_INVALID exception is raised if argument is negative. assert!(libm::sqrtd(-1.0).is_nan()); assert!(libm::sqrtd(f64::NAN).is_nan()); for f in [0.0, -0.0, f64::INFINITY].iter().copied() { assert_eq!(libm::sqrtd(f), f); } }