# LGBM-rs [![Crates.io](https://img.shields.io/crates/v/lgbm.svg)](https://crates.io/crates/lgbm) [![Docs.rs](https://docs.rs/lgbm/badge.svg)](https://docs.rs/lgbm/) [![Actions Status](https://github.com/frozenlib/lgbm-rs/workflows/CI/badge.svg)](https://github.com/frozenlib/lgbm-rs/actions) Unofficial Rust bindings for [LightGBM](https://lightgbm.readthedocs.io/en/latest/) ## Requirement ### Windows or Linux 1. Install LightGBM and build according to [LightGBM Documentation](https://lightgbm.readthedocs.io/en/latest/Installation-Guide.html). 2. Set the environment variable `LIGHTGBM_LIB_PATH` to the directory containing the build output (`.dll` and `.lib` on Windows, `.so` on Linux). ### MacOS Run the following command to install LightGBM on your system. ```sh brew install lightgbm ``` ## Example **Cargo.toml** ```toml [dependencies] lgbm = "0.0.1" ``` **main.rs** ```rust use lgbm::{ parameters::{Objective, Verbosity}, Booster, Dataset, Field, Mat, Parameters, PredictType, }; use std::sync::Arc; fn main() -> anyhow::Result<()> { let mut p = Parameters::new(); p.push("num_class", 3); p.push("objective", Objective::Multiclass); p.push("verbosity", Verbosity::Fatal); let mut train = Dataset::from_mat(&Mat::from_rows(train_features()), None, &p)?; train.set_field(Field::LABEL, &train_labels())?; let mut valid = Dataset::from_mat(&Mat::from_rows(valid_features()), Some(&train), &p)?; valid.set_field(Field::LABEL, &valid_labels())?; let mut b = Booster::new(Arc::new(train), &p)?; b.add_valid_data(Arc::new(valid))?; for _ in 0..100 { if b.update_one_iter()? { break; } } let p = Parameters::new(); let rs = b.predict_for_mat( &Mat::from_rows(test_features()), PredictType::Normal, 0, None, &p, )?; println!("\n{rs:.5}"); Ok(()) } fn train_features() -> Vec<[f64; 1]> { (0..128).map(|x| [(x % 3) as f64]).collect() } fn train_labels() -> Vec { (0..128).map(|x| (x % 3) as f32).collect() } fn valid_features() -> Vec<[f64; 1]> { (0..64).map(|x| [(x % 3) as f64]).collect() } fn valid_labels() -> Vec { (0..64).map(|x| (x % 3) as f32).collect() } fn test_features() -> Vec<[f64; 1]> { (0..4).map(|x| [(x % 3) as f64]).collect() } ``` **output** ```txt num_data : 4 num_class : 3 num_2 : 1 | 0 | 1 | 2 | ---|---------|---------|---------| 0 | 0.99998 | 0.00001 | 0.00001 | 1 | 0.00001 | 0.99998 | 0.00001 | 2 | 0.00001 | 0.00001 | 0.99998 | 3 | 0.99998 | 0.00001 | 0.00001 | ``` ## Static linking or dynamic linking The following types of linking are supported. | os | static | dynamic | | ------- | ------ | ------- | | Windows | ✔ | ✔ | | Linux | ✔ | ✔ | | MacOS | | ✔ | On Windows, if `lib_lightgbm.dll` exists in the directory specified by `LIGHTGBM_LIB_PATH`, it will be dynamically linked. Otherwise, it will be statically linked. On Linux, if `lib_lightgbm.a` exists in the directory specified by `LIGHTGBM_LIB_PATH`, it is statically linked. Otherwise, it is dynamically linked. ## License This project is licensed under MIT. See the LICENSE files for details. ## Contribution Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you will be under the MIT license, without any additional terms or conditions.