/* * datatypes.c * * data types for finite fields and functions for input, output, and * manipulation * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2017 Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ #ifdef HAVE_CONFIG_H #include #endif #ifdef OPENSSL #include #endif #include "datatypes.h" /* * bit_string is a buffer that is used to hold output strings, e.g. * for printing. */ /* the value MAX_PRINT_STRING_LEN is defined in datatypes.h */ /* include space for null terminator */ static char bit_string[MAX_PRINT_STRING_LEN + 1]; static uint8_t srtp_nibble_to_hex_char(uint8_t nibble) { static const char buf[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' }; return buf[nibble & 0xF]; } char *srtp_octet_string_hex_string(const void *s, int length) { const uint8_t *str = (const uint8_t *)s; int i; /* double length, since one octet takes two hex characters */ length *= 2; /* truncate string if it would be too long */ if (length > MAX_PRINT_STRING_LEN) length = MAX_PRINT_STRING_LEN - 2; for (i = 0; i < length; i += 2) { bit_string[i] = srtp_nibble_to_hex_char(*str >> 4); bit_string[i + 1] = srtp_nibble_to_hex_char(*str++ & 0xF); } bit_string[i] = 0; /* null terminate string */ return bit_string; } char *v128_hex_string(v128_t *x) { int i, j; for (i = j = 0; i < 16; i++) { bit_string[j++] = srtp_nibble_to_hex_char(x->v8[i] >> 4); bit_string[j++] = srtp_nibble_to_hex_char(x->v8[i] & 0xF); } bit_string[j] = 0; /* null terminate string */ return bit_string; } char *v128_bit_string(v128_t *x) { int j, i; uint32_t mask; for (j = i = 0; j < 4; j++) { for (mask = 0x80000000; mask > 0; mask >>= 1) { if (x->v32[j] & mask) bit_string[i] = '1'; else bit_string[i] = '0'; ++i; } } bit_string[128] = 0; /* null terminate string */ return bit_string; } void v128_copy_octet_string(v128_t *x, const uint8_t s[16]) { #ifdef ALIGNMENT_32BIT_REQUIRED if ((((uint32_t)&s[0]) & 0x3) != 0) #endif { x->v8[0] = s[0]; x->v8[1] = s[1]; x->v8[2] = s[2]; x->v8[3] = s[3]; x->v8[4] = s[4]; x->v8[5] = s[5]; x->v8[6] = s[6]; x->v8[7] = s[7]; x->v8[8] = s[8]; x->v8[9] = s[9]; x->v8[10] = s[10]; x->v8[11] = s[11]; x->v8[12] = s[12]; x->v8[13] = s[13]; x->v8[14] = s[14]; x->v8[15] = s[15]; } #ifdef ALIGNMENT_32BIT_REQUIRED else { v128_t *v = (v128_t *)&s[0]; v128_copy(x, v); } #endif } void v128_left_shift(v128_t *x, int shift) { int i; const int base_index = shift >> 5; const int bit_index = shift & 31; if (shift > 127) { v128_set_to_zero(x); return; } if (bit_index == 0) { for (i = 0; i < 4 - base_index; i++) x->v32[i] = x->v32[i + base_index]; } else { for (i = 0; i < 4 - base_index - 1; i++) x->v32[i] = (x->v32[i + base_index] >> bit_index) ^ (x->v32[i + base_index + 1] << (32 - bit_index)); x->v32[4 - base_index - 1] = x->v32[4 - 1] >> bit_index; } /* now wrap up the final portion */ for (i = 4 - base_index; i < 4; i++) x->v32[i] = 0; } /* functions manipulating bitvector_t */ int bitvector_alloc(bitvector_t *v, unsigned long length) { unsigned long l; /* Round length up to a multiple of bits_per_word */ length = (length + bits_per_word - 1) & ~(unsigned long)((bits_per_word - 1)); l = length / bits_per_word * bytes_per_word; /* allocate memory, then set parameters */ if (l == 0) { v->word = NULL; v->length = 0; return -1; } else { v->word = (uint32_t *)srtp_crypto_alloc(l); if (v->word == NULL) { v->length = 0; return -1; } } v->length = length; /* initialize bitvector to zero */ bitvector_set_to_zero(v); return 0; } void bitvector_dealloc(bitvector_t *v) { if (v->word != NULL) srtp_crypto_free(v->word); v->word = NULL; v->length = 0; } void bitvector_set_to_zero(bitvector_t *x) { /* C99 guarantees that memset(0) will set the value 0 for uint32_t */ memset(x->word, 0, x->length >> 3); } void bitvector_left_shift(bitvector_t *x, int shift) { int i; const int base_index = shift >> 5; const int bit_index = shift & 31; const int word_length = x->length >> 5; if (shift >= (int)x->length) { bitvector_set_to_zero(x); return; } if (bit_index == 0) { for (i = 0; i < word_length - base_index; i++) x->word[i] = x->word[i + base_index]; } else { for (i = 0; i < word_length - base_index - 1; i++) x->word[i] = (x->word[i + base_index] >> bit_index) ^ (x->word[i + base_index + 1] << (32 - bit_index)); x->word[word_length - base_index - 1] = x->word[word_length - 1] >> bit_index; } /* now wrap up the final portion */ for (i = word_length - base_index; i < word_length; i++) x->word[i] = 0; } int srtp_octet_string_is_eq(uint8_t *a, uint8_t *b, int len) { uint8_t *end = b + len; uint8_t accumulator = 0; /* * We use this somewhat obscure implementation to try to ensure the running * time only depends on len, even accounting for compiler optimizations. * The accumulator ends up zero iff the strings are equal. */ while (b < end) accumulator |= (*a++ ^ *b++); /* Return 1 if *not* equal. */ return accumulator != 0; } void srtp_cleanse(void *s, size_t len) { volatile unsigned char *p = (volatile unsigned char *)s; while (len--) *p++ = 0; } void octet_string_set_to_zero(void *s, size_t len) { #if defined(OPENSSL) OPENSSL_cleanse(s, len); #else srtp_cleanse(s, len); #endif }