/*- * See the file LICENSE for redistribution information. * * Copyright (c) 1999-2009 Oracle. All rights reserved. * * $Id$ */ #include "db_config.h" #include "db_int.h" #include "dbinc/db_page.h" #include "dbinc/db_verify.h" #include "dbinc/btree.h" #include "dbinc/lock.h" #include "dbinc/mp.h" static int __bam_safe_getdata __P((DB *, DB_THREAD_INFO *, PAGE *, u_int32_t, int, DBT *, int *)); static int __bam_vrfy_inp __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t, db_indx_t *, u_int32_t)); static int __bam_vrfy_treeorder __P((DB *, DB_THREAD_INFO *, PAGE *, BINTERNAL *, BINTERNAL *, int (*)(DB *, const DBT *, const DBT *), u_int32_t)); static int __ram_vrfy_inp __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t, db_indx_t *, u_int32_t)); /* * __bam_vrfy_meta -- * Verify the btree-specific part of a metadata page. * * PUBLIC: int __bam_vrfy_meta __P((DB *, VRFY_DBINFO *, BTMETA *, * PUBLIC: db_pgno_t, u_int32_t)); */ int __bam_vrfy_meta(dbp, vdp, meta, pgno, flags) DB *dbp; VRFY_DBINFO *vdp; BTMETA *meta; db_pgno_t pgno; u_int32_t flags; { ENV *env; VRFY_PAGEINFO *pip; int isbad, t_ret, ret; db_indx_t ovflsize; env = dbp->env; isbad = 0; if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); /* * If VRFY_INCOMPLETE is not set, then we didn't come through * __db_vrfy_pagezero and didn't incompletely * check this page--we haven't checked it at all. * Thus we need to call __db_vrfy_meta and check the common fields. * * If VRFY_INCOMPLETE is set, we've already done all the same work * in __db_vrfy_pagezero, so skip the check. */ if (!F_ISSET(pip, VRFY_INCOMPLETE) && (ret = __db_vrfy_meta(dbp, vdp, &meta->dbmeta, pgno, flags)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; } /* bt_minkey: must be >= 2; must produce sensible ovflsize */ /* avoid division by zero */ ovflsize = meta->minkey > 0 ? B_MINKEY_TO_OVFLSIZE(dbp, meta->minkey, dbp->pgsize) : 0; if (meta->minkey < 2 || ovflsize > B_MINKEY_TO_OVFLSIZE(dbp, DEFMINKEYPAGE, dbp->pgsize)) { pip->bt_minkey = 0; isbad = 1; EPRINT((env, "Page %lu: nonsensical bt_minkey value %lu on metadata page", (u_long)pgno, (u_long)meta->minkey)); } else pip->bt_minkey = meta->minkey; /* re_len: no constraints on this (may be zero or huge--we make rope) */ pip->re_pad = meta->re_pad; pip->re_len = meta->re_len; /* * The root must not be current page or 0 and it must be within * database. If this metadata page is the master meta data page * of the file, then the root page had better be page 1. */ pip->root = 0; if (meta->root == PGNO_INVALID || meta->root == pgno || !IS_VALID_PGNO(meta->root) || (pgno == PGNO_BASE_MD && meta->root != 1)) { isbad = 1; EPRINT((env, "Page %lu: nonsensical root page %lu on metadata page", (u_long)pgno, (u_long)meta->root)); } else pip->root = meta->root; /* Flags. */ if (F_ISSET(&meta->dbmeta, BTM_RENUMBER)) F_SET(pip, VRFY_IS_RRECNO); if (F_ISSET(&meta->dbmeta, BTM_SUBDB)) { /* * If this is a master db meta page, it had better not have * duplicates. */ if (F_ISSET(&meta->dbmeta, BTM_DUP) && pgno == PGNO_BASE_MD) { isbad = 1; EPRINT((env, "Page %lu: Btree metadata page has both duplicates and multiple databases", (u_long)pgno)); } F_SET(pip, VRFY_HAS_SUBDBS); } if (F_ISSET(&meta->dbmeta, BTM_DUP)) F_SET(pip, VRFY_HAS_DUPS); if (F_ISSET(&meta->dbmeta, BTM_DUPSORT)) F_SET(pip, VRFY_HAS_DUPSORT); if (F_ISSET(&meta->dbmeta, BTM_RECNUM)) F_SET(pip, VRFY_HAS_RECNUMS); if (F_ISSET(pip, VRFY_HAS_RECNUMS) && F_ISSET(pip, VRFY_HAS_DUPS)) { EPRINT((env, "Page %lu: Btree metadata page illegally has both recnums and dups", (u_long)pgno)); isbad = 1; } if (F_ISSET(&meta->dbmeta, BTM_RECNO)) { F_SET(pip, VRFY_IS_RECNO); dbp->type = DB_RECNO; } else if (F_ISSET(pip, VRFY_IS_RRECNO)) { isbad = 1; EPRINT((env, "Page %lu: metadata page has renumber flag set but is not recno", (u_long)pgno)); } #ifdef HAVE_COMPRESSION if (F_ISSET(&meta->dbmeta, BTM_COMPRESS)) { F_SET(pip, VRFY_HAS_COMPRESS); if (!DB_IS_COMPRESSED(dbp)) { ((BTREE *)dbp->bt_internal)->bt_compress = __bam_defcompress; ((BTREE *)dbp->bt_internal)->bt_decompress = __bam_defdecompress; } /* * Copy dup_compare to compress_dup_compare, and use the * compression duplicate compare. */ if (F_ISSET(pip, VRFY_HAS_DUPSORT)) { if (dbp->dup_compare == NULL) dbp->dup_compare = __bam_defcmp; if (((BTREE *)dbp->bt_internal)->compress_dup_compare == NULL) { ((BTREE *)dbp->bt_internal)-> compress_dup_compare = dbp->dup_compare; dbp->dup_compare = __bam_compress_dupcmp; } } } if (F_ISSET(pip, VRFY_HAS_RECNUMS) && F_ISSET(pip, VRFY_HAS_COMPRESS)) { EPRINT((env, "Page %lu: Btree metadata page illegally has both recnums and compression", (u_long)pgno)); isbad = 1; } if (F_ISSET(pip, VRFY_HAS_DUPS) && !F_ISSET(pip, VRFY_HAS_DUPSORT) && F_ISSET(pip, VRFY_HAS_COMPRESS)) { EPRINT((env, "Page %lu: Btree metadata page illegally has both unsorted duplicates%s", (u_long)pgno, " and compression")); isbad = 1; } #endif if (F_ISSET(pip, VRFY_IS_RECNO) && F_ISSET(pip, VRFY_HAS_DUPS)) { EPRINT((env, "Page %lu: recno metadata page specifies duplicates", (u_long)pgno)); isbad = 1; } if (F_ISSET(&meta->dbmeta, BTM_FIXEDLEN)) F_SET(pip, VRFY_IS_FIXEDLEN); else if (pip->re_len > 0) { /* * It's wrong to have an re_len if it's not a fixed-length * database */ isbad = 1; EPRINT((env, "Page %lu: re_len of %lu in non-fixed-length database", (u_long)pgno, (u_long)pip->re_len)); } /* * We do not check that the rest of the page is 0, because it may * not be and may still be correct. */ err: if ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0 && ret == 0) ret = t_ret; if (LF_ISSET(DB_SALVAGE) && (t_ret = __db_salvage_markdone(vdp, pgno)) != 0 && ret == 0) ret = t_ret; return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret); } /* * __ram_vrfy_leaf -- * Verify a recno leaf page. * * PUBLIC: int __ram_vrfy_leaf __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t, * PUBLIC: u_int32_t)); */ int __ram_vrfy_leaf(dbp, vdp, h, pgno, flags) DB *dbp; VRFY_DBINFO *vdp; PAGE *h; db_pgno_t pgno; u_int32_t flags; { BKEYDATA *bk; ENV *env; VRFY_PAGEINFO *pip; db_indx_t i; int ret, t_ret, isbad; u_int32_t re_len_guess, len; env = dbp->env; isbad = 0; if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); if (TYPE(h) != P_LRECNO) { ret = __db_unknown_path(env, "__ram_vrfy_leaf"); goto err; } /* * Verify (and, if relevant, save off) page fields common to * all PAGEs. */ if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; } /* * Verify inp[]. Return immediately if it returns DB_VERIFY_BAD; * further checks are dangerous. */ if ((ret = __bam_vrfy_inp(dbp, vdp, h, pgno, &pip->entries, flags)) != 0) goto err; if (F_ISSET(pip, VRFY_HAS_DUPS)) { EPRINT((env, "Page %lu: Recno database has dups", (u_long)pgno)); ret = DB_VERIFY_BAD; goto err; } /* * Walk through inp and see if the lengths of all the records are the * same--if so, this may be a fixed-length database, and we want to * save off this value. We know inp to be safe if we've gotten this * far. */ re_len_guess = 0; for (i = 0; i < NUM_ENT(h); i++) { bk = GET_BKEYDATA(dbp, h, i); /* KEYEMPTY. Go on. */ if (B_DISSET(bk->type)) continue; if (bk->type == B_OVERFLOW) len = ((BOVERFLOW *)bk)->tlen; else if (bk->type == B_KEYDATA) len = bk->len; else { isbad = 1; EPRINT((env, "Page %lu: nonsensical type for item %lu", (u_long)pgno, (u_long)i)); continue; } if (re_len_guess == 0) re_len_guess = len; /* * Is this item's len the same as the last one's? If not, * reset to 0 and break--we don't have a single re_len. * Otherwise, go on to the next item. */ if (re_len_guess != len) { re_len_guess = 0; break; } } pip->re_len = re_len_guess; /* Save off record count. */ pip->rec_cnt = NUM_ENT(h); err: if ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0 && ret == 0) ret = t_ret; return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret); } /* * __bam_vrfy -- * Verify a btree leaf or internal page. * * PUBLIC: int __bam_vrfy __P((DB *, VRFY_DBINFO *, PAGE *, db_pgno_t, * PUBLIC: u_int32_t)); */ int __bam_vrfy(dbp, vdp, h, pgno, flags) DB *dbp; VRFY_DBINFO *vdp; PAGE *h; db_pgno_t pgno; u_int32_t flags; { ENV *env; VRFY_PAGEINFO *pip; int ret, t_ret, isbad; env = dbp->env; isbad = 0; if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); switch (TYPE(h)) { case P_IBTREE: case P_IRECNO: case P_LBTREE: case P_LDUP: break; default: ret = __db_unknown_path(env, "__bam_vrfy"); goto err; } /* * Verify (and, if relevant, save off) page fields common to * all PAGEs. */ if ((ret = __db_vrfy_datapage(dbp, vdp, h, pgno, flags)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; } /* * The record count is, on internal pages, stored in an overloaded * next_pgno field. Save it off; we'll verify it when we check * overall database structure. We could overload the field * in VRFY_PAGEINFO, too, but this seems gross, and space * is not at such a premium. */ pip->rec_cnt = RE_NREC(h); /* * Verify inp[]. */ if (TYPE(h) == P_IRECNO) { if ((ret = __ram_vrfy_inp(dbp, vdp, h, pgno, &pip->entries, flags)) != 0) goto err; } else if ((ret = __bam_vrfy_inp(dbp, vdp, h, pgno, &pip->entries, flags)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; EPRINT((env, "Page %lu: item order check unsafe: skipping", (u_long)pgno)); } else if (!LF_ISSET(DB_NOORDERCHK) && (ret = __bam_vrfy_itemorder(dbp, vdp, vdp->thread_info, h, pgno, 0, 0, 0, flags)) != 0) { /* * We know that the elements of inp are reasonable. * * Check that elements fall in the proper order. */ if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; } err: if ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0 && ret == 0) ret = t_ret; return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret); } /* * __ram_vrfy_inp -- * Verify that all entries in a P_IRECNO inp[] array are reasonable, * and count them. Note that P_LRECNO uses __bam_vrfy_inp; * P_IRECNOs are a special, and simpler, case, since they have * RINTERNALs rather than BKEYDATA/BINTERNALs. */ static int __ram_vrfy_inp(dbp, vdp, h, pgno, nentriesp, flags) DB *dbp; VRFY_DBINFO *vdp; PAGE *h; db_pgno_t pgno; db_indx_t *nentriesp; u_int32_t flags; { ENV *env; RINTERNAL *ri; VRFY_CHILDINFO child; VRFY_PAGEINFO *pip; int ret, t_ret, isbad; u_int32_t himark, i, offset, nentries; db_indx_t *inp; u_int8_t *pagelayout, *p; env = dbp->env; isbad = 0; memset(&child, 0, sizeof(VRFY_CHILDINFO)); nentries = 0; pagelayout = NULL; if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); if (TYPE(h) != P_IRECNO) { ret = __db_unknown_path(env, "__ram_vrfy_inp"); goto err; } himark = dbp->pgsize; if ((ret = __os_malloc(env, dbp->pgsize, &pagelayout)) != 0) goto err; memset(pagelayout, 0, dbp->pgsize); inp = P_INP(dbp, h); for (i = 0; i < NUM_ENT(h); i++) { if ((u_int8_t *)inp + i >= (u_int8_t *)h + himark) { EPRINT((env, "Page %lu: entries listing %lu overlaps data", (u_long)pgno, (u_long)i)); ret = DB_VERIFY_BAD; goto err; } offset = inp[i]; /* * Check that the item offset is reasonable: it points * somewhere after the inp array and before the end of the * page. */ if (offset <= (u_int32_t)((u_int8_t *)inp + i - (u_int8_t *)h) || offset > (u_int32_t)(dbp->pgsize - RINTERNAL_SIZE)) { isbad = 1; EPRINT((env, "Page %lu: bad offset %lu at index %lu", (u_long)pgno, (u_long)offset, (u_long)i)); continue; } /* Update the high-water mark (what HOFFSET should be) */ if (offset < himark) himark = offset; nentries++; /* Make sure this RINTERNAL is not multiply referenced. */ ri = GET_RINTERNAL(dbp, h, i); if (pagelayout[offset] == 0) { pagelayout[offset] = 1; child.pgno = ri->pgno; child.type = V_RECNO; child.nrecs = ri->nrecs; if ((ret = __db_vrfy_childput(vdp, pgno, &child)) != 0) goto err; } else { EPRINT((env, "Page %lu: RINTERNAL structure at offset %lu referenced twice", (u_long)pgno, (u_long)offset)); isbad = 1; } } for (p = pagelayout + himark; p < pagelayout + dbp->pgsize; p += RINTERNAL_SIZE) if (*p != 1) { EPRINT((env, "Page %lu: gap between items at offset %lu", (u_long)pgno, (u_long)(p - pagelayout))); isbad = 1; } if ((db_indx_t)himark != HOFFSET(h)) { EPRINT((env, "Page %lu: bad HOFFSET %lu, appears to be %lu", (u_long)pgno, (u_long)(HOFFSET(h)), (u_long)himark)); isbad = 1; } *nentriesp = nentries; err: if ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0 && ret == 0) ret = t_ret; if (pagelayout != NULL) __os_free(env, pagelayout); return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret); } typedef enum { VRFY_ITEM_NOTSET=0, VRFY_ITEM_BEGIN, VRFY_ITEM_END } VRFY_ITEM; /* * __bam_vrfy_inp -- * Verify that all entries in inp[] array are reasonable; * count them. */ static int __bam_vrfy_inp(dbp, vdp, h, pgno, nentriesp, flags) DB *dbp; VRFY_DBINFO *vdp; PAGE *h; db_pgno_t pgno; db_indx_t *nentriesp; u_int32_t flags; { BKEYDATA *bk; BOVERFLOW *bo; ENV *env; VRFY_CHILDINFO child; VRFY_ITEM *pagelayout; VRFY_PAGEINFO *pip; u_int32_t himark, offset; /* * These would be db_indx_ts * but for alignment. */ u_int32_t i, endoff, nentries; int isbad, initem, isdupitem, ret, t_ret; env = dbp->env; isbad = isdupitem = 0; nentries = 0; memset(&child, 0, sizeof(VRFY_CHILDINFO)); if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); switch (TYPE(h)) { case P_IBTREE: case P_LBTREE: case P_LDUP: case P_LRECNO: break; default: /* * In the salvager, we might call this from a page which * we merely suspect is a btree page. Otherwise, it * shouldn't get called--if it is, that's a verifier bug. */ if (LF_ISSET(DB_SALVAGE)) break; ret = __db_unknown_path(env, "__bam_vrfy_inp"); goto err; } /* * Loop through inp[], the array of items, until we either * run out of entries or collide with the data. Keep track * of h_offset in himark. * * For each element in inp[i], make sure it references a region * that starts after the end of the inp array (as defined by * NUM_ENT(h)), ends before the beginning of the page, doesn't * overlap any other regions, and doesn't have a gap between * it and the region immediately after it. */ himark = dbp->pgsize; if ((ret = __os_calloc( env, dbp->pgsize, sizeof(pagelayout[0]), &pagelayout)) != 0) goto err; for (i = 0; i < NUM_ENT(h); i++) { switch (ret = __db_vrfy_inpitem(dbp, h, pgno, i, 1, flags, &himark, &offset)) { case 0: break; case DB_VERIFY_BAD: isbad = 1; continue; case DB_VERIFY_FATAL: isbad = 1; goto err; default: DB_ASSERT(env, ret != 0); break; } /* * We now have a plausible beginning for the item, and we know * its length is safe. * * Mark the beginning and end in pagelayout so we can make sure * items have no overlaps or gaps. */ bk = GET_BKEYDATA(dbp, h, i); if (pagelayout[offset] == VRFY_ITEM_NOTSET) pagelayout[offset] = VRFY_ITEM_BEGIN; else if (pagelayout[offset] == VRFY_ITEM_BEGIN) { /* * Having two inp entries that point at the same patch * of page is legal if and only if the page is * a btree leaf and they're onpage duplicate keys-- * that is, if (i % P_INDX) == 0. */ if ((i % P_INDX == 0) && (TYPE(h) == P_LBTREE)) { /* Flag for later. */ F_SET(pip, VRFY_HAS_DUPS); /* Bump up nentries so we don't undercount. */ nentries++; /* * We'll check to make sure the end is * equal, too. */ isdupitem = 1; } else { isbad = 1; EPRINT((env, "Page %lu: duplicated item %lu", (u_long)pgno, (u_long)i)); } } /* * Mark the end. Its location varies with the page type * and the item type. * * If the end already has a sign other than 0, do nothing-- * it's an overlap that we'll catch later. */ switch (B_TYPE(bk->type)) { case B_KEYDATA: if (TYPE(h) == P_IBTREE) /* It's a BINTERNAL. */ endoff = offset + BINTERNAL_SIZE(bk->len) - 1; else endoff = offset + BKEYDATA_SIZE(bk->len) - 1; break; case B_DUPLICATE: /* * Flag that we have dups; we'll check whether * that's okay during the structure check. */ F_SET(pip, VRFY_HAS_DUPS); /* FALLTHROUGH */ case B_OVERFLOW: /* * Overflow entries on internal pages are stored * as the _data_ of a BINTERNAL; overflow entries * on leaf pages are stored as the entire entry. */ endoff = offset + ((TYPE(h) == P_IBTREE) ? BINTERNAL_SIZE(BOVERFLOW_SIZE) : BOVERFLOW_SIZE) - 1; break; default: /* * We'll complain later; for now, just mark * a minimum. */ endoff = offset + BKEYDATA_SIZE(0) - 1; break; } /* * If this is an onpage duplicate key we've seen before, * the end had better coincide too. */ if (isdupitem && pagelayout[endoff] != VRFY_ITEM_END) { EPRINT((env, "Page %lu: duplicated item %lu", (u_long)pgno, (u_long)i)); isbad = 1; } else if (pagelayout[endoff] == VRFY_ITEM_NOTSET) pagelayout[endoff] = VRFY_ITEM_END; isdupitem = 0; /* * There should be no deleted items in a quiescent tree, * except in recno. */ if (B_DISSET(bk->type) && TYPE(h) != P_LRECNO) { isbad = 1; EPRINT((env, "Page %lu: item %lu marked deleted", (u_long)pgno, (u_long)i)); } /* * Check the type and such of bk--make sure it's reasonable * for the pagetype. */ switch (B_TYPE(bk->type)) { case B_KEYDATA: /* * This is a normal, non-overflow BKEYDATA or BINTERNAL. * The only thing to check is the len, and that's * already been done. */ break; case B_DUPLICATE: if (TYPE(h) == P_IBTREE) { isbad = 1; EPRINT((env, "Page %lu: duplicate page referenced by internal btree page at item %lu", (u_long)pgno, (u_long)i)); break; } else if (TYPE(h) == P_LRECNO) { isbad = 1; EPRINT((env, "Page %lu: duplicate page referenced by recno page at item %lu", (u_long)pgno, (u_long)i)); break; } /* FALLTHROUGH */ case B_OVERFLOW: bo = (TYPE(h) == P_IBTREE) ? (BOVERFLOW *)(((BINTERNAL *)bk)->data) : (BOVERFLOW *)bk; if (B_TYPE(bk->type) == B_OVERFLOW) /* Make sure tlen is reasonable. */ if (bo->tlen > dbp->pgsize * vdp->last_pgno) { isbad = 1; EPRINT((env, "Page %lu: impossible tlen %lu, item %lu", (u_long)pgno, (u_long)bo->tlen, (u_long)i)); /* Don't save as a child. */ break; } if (!IS_VALID_PGNO(bo->pgno) || bo->pgno == pgno || bo->pgno == PGNO_INVALID) { isbad = 1; EPRINT((env, "Page %lu: offpage item %lu has bad pgno %lu", (u_long)pgno, (u_long)i, (u_long)bo->pgno)); /* Don't save as a child. */ break; } child.pgno = bo->pgno; child.type = (B_TYPE(bk->type) == B_OVERFLOW ? V_OVERFLOW : V_DUPLICATE); child.tlen = bo->tlen; if ((ret = __db_vrfy_childput(vdp, pgno, &child)) != 0) goto err; break; default: isbad = 1; EPRINT((env, "Page %lu: item %lu of invalid type %lu", (u_long)pgno, (u_long)i, (u_long)B_TYPE(bk->type))); break; } } /* * Now, loop through and make sure the items are contiguous and * non-overlapping. */ initem = 0; for (i = himark; i < dbp->pgsize; i++) if (initem == 0) switch (pagelayout[i]) { case VRFY_ITEM_NOTSET: /* May be just for alignment. */ if (i != DB_ALIGN(i, sizeof(u_int32_t))) continue; isbad = 1; EPRINT((env, "Page %lu: gap between items at offset %lu", (u_long)pgno, (u_long)i)); /* Find the end of the gap */ for (; pagelayout[i + 1] == VRFY_ITEM_NOTSET && (size_t)(i + 1) < dbp->pgsize; i++) ; break; case VRFY_ITEM_BEGIN: /* We've found an item. Check its alignment. */ if (i != DB_ALIGN(i, sizeof(u_int32_t))) { isbad = 1; EPRINT((env, "Page %lu: offset %lu unaligned", (u_long)pgno, (u_long)i)); } initem = 1; nentries++; break; case VRFY_ITEM_END: /* * We've hit the end of an item even though * we don't think we're in one; must * be an overlap. */ isbad = 1; EPRINT((env, "Page %lu: overlapping items at offset %lu", (u_long)pgno, (u_long)i)); break; } else switch (pagelayout[i]) { case VRFY_ITEM_NOTSET: /* In the middle of an item somewhere. Okay. */ break; case VRFY_ITEM_END: /* End of an item; switch to out-of-item mode.*/ initem = 0; break; case VRFY_ITEM_BEGIN: /* * Hit a second item beginning without an * end. Overlap. */ isbad = 1; EPRINT((env, "Page %lu: overlapping items at offset %lu", (u_long)pgno, (u_long)i)); break; } __os_free(env, pagelayout); /* Verify HOFFSET. */ if ((db_indx_t)himark != HOFFSET(h)) { EPRINT((env, "Page %lu: bad HOFFSET %lu, appears to be %lu", (u_long)pgno, (u_long)HOFFSET(h), (u_long)himark)); isbad = 1; } err: if (nentriesp != NULL) *nentriesp = nentries; if ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0 && ret == 0) ret = t_ret; return ((isbad == 1 && ret == 0) ? DB_VERIFY_BAD : ret); } /* * __bam_vrfy_itemorder -- * Make sure the items on a page sort correctly. * * Assumes that NUM_ENT(h) and inp[0]..inp[NUM_ENT(h) - 1] are * reasonable; be sure that __bam_vrfy_inp has been called first. * * If ovflok is set, it also assumes that overflow page chains * hanging off the current page have been sanity-checked, and so we * can use __bam_cmp to verify their ordering. If it is not set, * and we run into an overflow page, carp and return DB_VERIFY_BAD; * we shouldn't be called if any exist. * * PUBLIC: int __bam_vrfy_itemorder __P((DB *, VRFY_DBINFO *, DB_THREAD_INFO *, * PUBLIC: PAGE *, db_pgno_t, u_int32_t, int, int, u_int32_t)); */ int __bam_vrfy_itemorder(dbp, vdp, ip, h, pgno, nentries, ovflok, hasdups, flags) DB *dbp; VRFY_DBINFO *vdp; DB_THREAD_INFO *ip; PAGE *h; db_pgno_t pgno; u_int32_t nentries; int ovflok, hasdups; u_int32_t flags; { BINTERNAL *bi; BKEYDATA *bk; BOVERFLOW *bo; BTREE *bt; DBC *dbc; DBT dbta, dbtb, dup_1, dup_2, *p1, *p2, *tmp; ENV *env; VRFY_PAGEINFO *pip; db_indx_t i, *inp; int adj, cmp, freedup_1, freedup_2, isbad, ret, t_ret; int (*dupfunc) __P((DB *, const DBT *, const DBT *)); int (*func) __P((DB *, const DBT *, const DBT *)); void *buf1, *buf2, *tmpbuf; /* * We need to work in the ORDERCHKONLY environment where we might * not have a pip, but we also may need to work in contexts where * NUM_ENT isn't safe. */ if (vdp != NULL) { if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); nentries = pip->entries; } else pip = NULL; env = dbp->env; ret = isbad = 0; bo = NULL; /* Shut up compiler. */ memset(&dbta, 0, sizeof(DBT)); F_SET(&dbta, DB_DBT_REALLOC); memset(&dbtb, 0, sizeof(DBT)); F_SET(&dbtb, DB_DBT_REALLOC); buf1 = buf2 = NULL; DB_ASSERT(env, !LF_ISSET(DB_NOORDERCHK)); dupfunc = (dbp->dup_compare == NULL) ? __bam_defcmp : dbp->dup_compare; if (TYPE(h) == P_LDUP) func = dupfunc; else { func = __bam_defcmp; if (dbp->bt_internal != NULL) { bt = (BTREE *)dbp->bt_internal; if (bt->bt_compare != NULL) func = bt->bt_compare; } } /* * We alternate our use of dbta and dbtb so that we can walk * through the page key-by-key without copying a dbt twice. * p1 is always the dbt for index i - 1, and p2 for index i. * Reset the data pointers in case we are retrying. */ retry: p1 = &dbta; p1->data = NULL; p2 = &dbtb; p2->data = NULL; /* * Loop through the entries. nentries ought to contain the * actual count, and so is a safe way to terminate the loop; whether * we inc. by one or two depends on whether we're a leaf page-- * on a leaf page, we care only about keys. On internal pages * and LDUP pages, we want to check the order of all entries. * * Note that on IBTREE pages or the index page of a partitioned * database, we start with item 1, since item 0 doesn't get looked * at by __bam_cmp. */ inp = P_INP(dbp, h); adj = (TYPE(h) == P_LBTREE) ? P_INDX : O_INDX; for (i = (TYPE(h) == P_IBTREE || dbp->p_internal != NULL) ? adj : 0; i < nentries; i += adj) { /* * Put key i-1, now in p2, into p1, by swapping DBTs and bufs. */ tmp = p1; p1 = p2; p2 = tmp; tmpbuf = buf1; buf1 = buf2; buf2 = tmpbuf; /* * Get key i into p2. */ switch (TYPE(h)) { case P_IBTREE: bi = GET_BINTERNAL(dbp, h, i); if (B_TYPE(bi->type) == B_OVERFLOW) { bo = (BOVERFLOW *)(bi->data); goto overflow; } else { p2->data = bi->data; p2->size = bi->len; } /* * The leftmost key on an internal page must be * len 0, since it's just a placeholder and * automatically sorts less than all keys. * * XXX * This criterion does not currently hold! * See todo list item #1686. Meanwhile, it's harmless * to just not check for it. */ #if 0 if (i == 0 && bi->len != 0) { isbad = 1; EPRINT((env, "Page %lu: lowest key on internal page of nonzero length", (u_long)pgno)); } #endif break; case P_LBTREE: case P_LDUP: bk = GET_BKEYDATA(dbp, h, i); if (B_TYPE(bk->type) == B_OVERFLOW) { bo = (BOVERFLOW *)bk; goto overflow; } else { p2->data = bk->data; p2->size = bk->len; } break; default: /* * This means our caller screwed up and sent us * an inappropriate page. */ ret = __db_unknown_path(env, "__bam_vrfy_itemorder"); goto err; } if (0) { /* * If ovflok != 1, we can't safely go chasing * overflow pages with the normal routines now; * they might be unsafe or nonexistent. Mark this * page as incomplete and return. * * Note that we don't need to worry about freeing * buffers, since they can't have been allocated * if overflow items are unsafe. */ overflow: if (!ovflok) { F_SET(pip, VRFY_INCOMPLETE); goto err; } /* * Overflow items are safe to chase. Do so. * Fetch the overflow item into p2->data, * NULLing it or reallocing it as appropriate. * * (We set p2->data to buf2 before the call * so we're sure to realloc if we can and if p2 * was just pointing at a non-overflow item.) */ p2->data = buf2; if ((ret = __db_cursor_int(dbp, ip, NULL, DB_BTREE, PGNO_INVALID, 0, DB_LOCK_INVALIDID, &dbc)) != 0) goto err; if ((ret = __db_goff(dbc, p2, bo->tlen, bo->pgno, NULL, NULL)) != 0) { isbad = 1; EPRINT((env, "Page %lu: error %lu in fetching overflow item %lu", (u_long)pgno, (u_long)ret, (u_long)i)); } /* In case it got realloc'ed and thus changed. */ buf2 = p2->data; } /* Compare with the last key. */ if (p1->data != NULL && p2->data != NULL) { cmp = inp[i] == inp[i - adj] ? 0 : func(dbp, p1, p2); /* comparison succeeded */ if (cmp > 0) { /* * If we are looking at an internal page, we * don't know whether it is part of the main * database or in an off-page-duplicate tree. * If the main comparator fails, retry with * the duplicate comparator. */ if (TYPE(h) == P_IBTREE && func != dupfunc) { func = dupfunc; goto retry; } isbad = 1; EPRINT((env, "Page %lu: out-of-order key at entry %lu", (u_long)pgno, (u_long)i)); /* proceed */ } else if (cmp == 0) { if (inp[i] != inp[i - adj]) { /* See above. */ if (TYPE(h) == P_IBTREE && func != dupfunc) { func = dupfunc; goto retry; } isbad = 1; EPRINT((env, "Page %lu: non-dup dup key at entry %lu", (u_long)pgno, (u_long)i)); } /* * If they compared equally, this * had better be a (sub)database with dups. * Mark it so we can check during the * structure check. */ if (pip != NULL) F_SET(pip, VRFY_HAS_DUPS); else if (hasdups == 0) { /* See above. */ if (TYPE(h) == P_IBTREE && func != dupfunc) { func = dupfunc; goto retry; } isbad = 1; EPRINT((env, "Page %lu: database with no duplicates has duplicated keys", (u_long)pgno)); } /* * If we're a btree leaf, check to see * if the data items of these on-page dups are * in sorted order. If not, flag this, so * that we can make sure during the * structure checks that the DUPSORT flag * is unset. * * At this point i points to a duplicate key. * Compare the datum before it (same key) * to the datum after it, i.e. i-1 to i+1. */ if (TYPE(h) == P_LBTREE) { /* * Unsafe; continue and we'll pick * up the bogus nentries later. */ if (i + 1 >= (db_indx_t)nentries) continue; /* * We don't bother with clever memory * management with on-page dups, * as it's only really a big win * in the overflow case, and overflow * dups are probably (?) rare. */ if (((ret = __bam_safe_getdata(dbp, ip, h, i - 1, ovflok, &dup_1, &freedup_1)) != 0) || ((ret = __bam_safe_getdata(dbp, ip, h, i + 1, ovflok, &dup_2, &freedup_2)) != 0)) goto err; /* * If either of the data are NULL, * it's because they're overflows and * it's not safe to chase them now. * Mark an incomplete and return. */ if (dup_1.data == NULL || dup_2.data == NULL) { DB_ASSERT(env, !ovflok); F_SET(pip, VRFY_INCOMPLETE); goto err; } /* * If the dups are out of order, * flag this. It's not an error * until we do the structure check * and see whether DUPSORT is set. */ if (dupfunc(dbp, &dup_1, &dup_2) > 0) F_SET(pip, VRFY_DUPS_UNSORTED); if (freedup_1) __os_ufree(env, dup_1.data); if (freedup_2) __os_ufree(env, dup_2.data); } } } } err: if (pip != NULL && ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0) && ret == 0) ret = t_ret; if (buf1 != NULL) __os_ufree(env, buf1); if (buf2 != NULL) __os_ufree(env, buf2); return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret); } /* * __bam_vrfy_structure -- * Verify the tree structure of a btree database (including the master * database containing subdbs). * * PUBLIC: int __bam_vrfy_structure __P((DB *, VRFY_DBINFO *, db_pgno_t, * PUBLIC: void *, void *, u_int32_t)); */ int __bam_vrfy_structure(dbp, vdp, meta_pgno, lp, rp, flags) DB *dbp; VRFY_DBINFO *vdp; db_pgno_t meta_pgno; void *lp, *rp; u_int32_t flags; { DB *pgset; ENV *env; VRFY_PAGEINFO *mip, *rip; db_pgno_t root, p; int t_ret, ret; u_int32_t nrecs, level, relen, stflags; env = dbp->env; mip = rip = 0; pgset = vdp->pgset; if ((ret = __db_vrfy_getpageinfo(vdp, meta_pgno, &mip)) != 0) return (ret); if ((ret = __db_vrfy_pgset_get(pgset, vdp->thread_info, meta_pgno, (int *)&p)) != 0) goto err; if (p != 0) { EPRINT((env, "Page %lu: btree metadata page observed twice", (u_long)meta_pgno)); ret = DB_VERIFY_BAD; goto err; } if ((ret = __db_vrfy_pgset_inc(pgset, vdp->thread_info, meta_pgno)) != 0) goto err; root = mip->root; if (root == 0) { EPRINT((env, "Page %lu: btree metadata page has no root", (u_long)meta_pgno)); ret = DB_VERIFY_BAD; goto err; } if ((ret = __db_vrfy_getpageinfo(vdp, root, &rip)) != 0) goto err; switch (rip->type) { case P_IBTREE: case P_LBTREE: stflags = flags | DB_ST_TOPLEVEL; if (F_ISSET(mip, VRFY_HAS_DUPS)) stflags |= DB_ST_DUPOK; if (F_ISSET(mip, VRFY_HAS_DUPSORT)) stflags |= DB_ST_DUPSORT; if (F_ISSET(mip, VRFY_HAS_RECNUMS)) stflags |= DB_ST_RECNUM; ret = __bam_vrfy_subtree(dbp, vdp, root, lp, rp, stflags, NULL, NULL, NULL); break; case P_IRECNO: case P_LRECNO: stflags = flags | DB_ST_RECNUM | DB_ST_IS_RECNO | DB_ST_TOPLEVEL; if (mip->re_len > 0) stflags |= DB_ST_RELEN; if ((ret = __bam_vrfy_subtree(dbp, vdp, root, NULL, NULL, stflags, &level, &nrecs, &relen)) != 0) goto err; /* * Even if mip->re_len > 0, re_len may come back zero if the * tree is empty. It should be okay to just skip the check in * this case, as if there are any non-deleted keys at all, * that should never happen. */ if (mip->re_len > 0 && relen > 0 && mip->re_len != relen) { EPRINT((env, "Page %lu: recno database has bad re_len %lu", (u_long)meta_pgno, (u_long)relen)); ret = DB_VERIFY_BAD; goto err; } ret = 0; break; case P_LDUP: EPRINT((env, "Page %lu: duplicate tree referenced from metadata page", (u_long)meta_pgno)); ret = DB_VERIFY_BAD; break; default: EPRINT((env, "Page %lu: btree root of incorrect type %lu on metadata page", (u_long)meta_pgno, (u_long)rip->type)); ret = DB_VERIFY_BAD; break; } err: if (mip != NULL && ((t_ret = __db_vrfy_putpageinfo(env, vdp, mip)) != 0) && ret == 0) ret = t_ret; if (rip != NULL && ((t_ret = __db_vrfy_putpageinfo(env, vdp, rip)) != 0) && ret == 0) ret = t_ret; return (ret); } /* * __bam_vrfy_subtree-- * Verify a subtree (or entire) btree with specified root. * * Note that this is public because it must be called to verify * offpage dup trees, including from hash. * * PUBLIC: int __bam_vrfy_subtree __P((DB *, VRFY_DBINFO *, db_pgno_t, void *, * PUBLIC: void *, u_int32_t, u_int32_t *, u_int32_t *, u_int32_t *)); */ int __bam_vrfy_subtree(dbp, vdp, pgno, l, r, flags, levelp, nrecsp, relenp) DB *dbp; VRFY_DBINFO *vdp; db_pgno_t pgno; void *l, *r; u_int32_t flags, *levelp, *nrecsp, *relenp; { BINTERNAL *li, *ri; DB *pgset; DBC *cc; DB_MPOOLFILE *mpf; ENV *env; PAGE *h; VRFY_CHILDINFO *child; VRFY_PAGEINFO *pip; db_indx_t i; db_pgno_t next_pgno, prev_pgno; db_recno_t child_nrecs, nrecs; u_int32_t child_level, child_relen, j, level, relen, stflags; u_int8_t leaf_type; int (*func) __P((DB *, const DBT *, const DBT *)); int isbad, p, ret, t_ret, toplevel; if (levelp != NULL) /* Don't leave uninitialized on error. */ *levelp = 0; if (nrecsp != NULL) *nrecsp = 0; env = dbp->env; mpf = dbp->mpf; h = NULL; next_pgno = prev_pgno = PGNO_INVALID; nrecs = 0; relen = 0; leaf_type = P_INVALID; isbad = ret = 0; /* Provide feedback on our progress to the application. */ if (!LF_ISSET(DB_SALVAGE)) __db_vrfy_struct_feedback(dbp, vdp); if ((ret = __db_vrfy_getpageinfo(vdp, pgno, &pip)) != 0) return (ret); cc = NULL; level = pip->bt_level; toplevel = LF_ISSET(DB_ST_TOPLEVEL) ? 1 : 0; LF_CLR(DB_ST_TOPLEVEL); /* * If this is the root, initialize the vdp's prev- and next-pgno * accounting. * * For each leaf page we hit, we'll want to make sure that * vdp->prev_pgno is the same as pip->prev_pgno and vdp->next_pgno is * our page number. Then, we'll set vdp->next_pgno to pip->next_pgno * and vdp->prev_pgno to our page number, and the next leaf page in * line should be able to do the same verification. */ if (toplevel) { /* * Cache the values stored in the vdp so that if we're an * auxiliary tree such as an off-page duplicate set, our * caller's leaf page chain doesn't get lost. */ prev_pgno = vdp->prev_pgno; next_pgno = vdp->next_pgno; leaf_type = vdp->leaf_type; vdp->next_pgno = vdp->prev_pgno = PGNO_INVALID; vdp->leaf_type = P_INVALID; } /* * We are recursively descending a btree, starting from the root * and working our way out to the leaves. * * There are four cases we need to deal with: * 1. pgno is a recno leaf page. Any children are overflows. * 2. pgno is a duplicate leaf page. Any children * are overflow pages; traverse them, and then return * level and nrecs. * 3. pgno is an ordinary leaf page. Check whether dups are * allowed, and if so, traverse any off-page dups or * overflows. Then return nrecs and level. * 4. pgno is a recno internal page. Recursively check any * child pages, making sure their levels are one lower * and their nrecs sum to ours. * 5. pgno is a btree internal page. Same as #4, plus we * must verify that for each pair of BINTERNAL entries * N and N+1, the leftmost item on N's child sorts * greater than N, and the rightmost item on N's child * sorts less than N+1. * * Furthermore, in any sorted page type (P_LDUP, P_LBTREE, P_IBTREE), * we need to verify the internal sort order is correct if, * due to overflow items, we were not able to do so earlier. */ switch (pip->type) { case P_LRECNO: case P_LDUP: case P_LBTREE: /* * Cases 1, 2 and 3. * * We're some sort of leaf page; verify * that our linked list of leaves is consistent. */ if (vdp->leaf_type == P_INVALID) { /* * First leaf page. Set the type that all its * successors should be, and verify that our prev_pgno * is PGNO_INVALID. */ vdp->leaf_type = pip->type; if (pip->prev_pgno != PGNO_INVALID) goto bad_prev; } else { /* * Successor leaf page. Check our type, the previous * page's next_pgno, and our prev_pgno. */ if (pip->type != vdp->leaf_type) { isbad = 1; EPRINT((env, "Page %lu: unexpected page type %lu found in leaf chain (expected %lu)", (u_long)pip->pgno, (u_long)pip->type, (u_long)vdp->leaf_type)); } /* * Don't do the prev/next_pgno checks if we've lost * leaf pages due to another corruption. */ if (!F_ISSET(vdp, VRFY_LEAFCHAIN_BROKEN)) { if (pip->pgno != vdp->next_pgno) { isbad = 1; EPRINT((env, "Page %lu: incorrect next_pgno %lu found in leaf chain (should be %lu)", (u_long)vdp->prev_pgno, (u_long)vdp->next_pgno, (u_long)pip->pgno)); } if (pip->prev_pgno != vdp->prev_pgno) { bad_prev: isbad = 1; EPRINT((env, "Page %lu: incorrect prev_pgno %lu found in leaf chain (should be %lu)", (u_long)pip->pgno, (u_long)pip->prev_pgno, (u_long)vdp->prev_pgno)); } } } vdp->prev_pgno = pip->pgno; vdp->next_pgno = pip->next_pgno; F_CLR(vdp, VRFY_LEAFCHAIN_BROKEN); /* * Overflow pages are common to all three leaf types; * traverse the child list, looking for overflows. */ if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0) goto err; for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0; ret = __db_vrfy_ccnext(cc, &child)) if (child->type == V_OVERFLOW && (ret = __db_vrfy_ovfl_structure(dbp, vdp, child->pgno, child->tlen, flags | DB_ST_OVFL_LEAF)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto done; } if ((ret = __db_vrfy_ccclose(cc)) != 0) goto err; cc = NULL; /* Case 1 */ if (pip->type == P_LRECNO) { if (!LF_ISSET(DB_ST_IS_RECNO) && !(LF_ISSET(DB_ST_DUPOK) && !LF_ISSET(DB_ST_DUPSORT))) { isbad = 1; EPRINT((env, "Page %lu: recno leaf page non-recno tree", (u_long)pgno)); goto done; } goto leaf; } else if (LF_ISSET(DB_ST_IS_RECNO)) { /* * It's a non-recno leaf. Had better not be a recno * subtree. */ isbad = 1; EPRINT((env, "Page %lu: non-recno leaf page in recno tree", (u_long)pgno)); goto done; } /* Case 2--no more work. */ if (pip->type == P_LDUP) goto leaf; /* Case 3 */ /* Check if we have any dups. */ if (F_ISSET(pip, VRFY_HAS_DUPS)) { /* If dups aren't allowed in this btree, trouble. */ if (!LF_ISSET(DB_ST_DUPOK)) { isbad = 1; EPRINT((env, "Page %lu: duplicates in non-dup btree", (u_long)pgno)); } else { /* * We correctly have dups. If any are off-page, * traverse those btrees recursively. */ if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0) goto err; for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0; ret = __db_vrfy_ccnext(cc, &child)) { stflags = flags | DB_ST_RECNUM | DB_ST_DUPSET; /* Skip any overflow entries. */ if (child->type == V_DUPLICATE) { if ((ret = __db_vrfy_duptype( dbp, vdp, child->pgno, stflags)) != 0) { isbad = 1; /* Next child. */ continue; } if ((ret = __bam_vrfy_subtree( dbp, vdp, child->pgno, NULL, NULL, stflags | DB_ST_TOPLEVEL, NULL, NULL, NULL)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; } } } if ((ret = __db_vrfy_ccclose(cc)) != 0) goto err; cc = NULL; /* * If VRFY_DUPS_UNSORTED is set, * DB_ST_DUPSORT had better not be. */ if (F_ISSET(pip, VRFY_DUPS_UNSORTED) && LF_ISSET(DB_ST_DUPSORT)) { isbad = 1; EPRINT((env, "Page %lu: unsorted duplicate set in sorted-dup database", (u_long)pgno)); } } } goto leaf; case P_IBTREE: case P_IRECNO: /* We handle these below. */ break; default: /* * If a P_IBTREE or P_IRECNO contains a reference to an * invalid page, we'll wind up here; handle it gracefully. * Note that the code at the "done" label assumes that the * current page is a btree/recno one of some sort; this * is not the case here, so we goto err. * * If the page is entirely zeroed, its pip->type will be a lie * (we assumed it was a hash page, as they're allowed to be * zeroed); handle this case specially. */ if (F_ISSET(pip, VRFY_IS_ALLZEROES)) ZEROPG_ERR_PRINT(env, pgno, "btree or recno page"); else EPRINT((env, "Page %lu: btree or recno page is of inappropriate type %lu", (u_long)pgno, (u_long)pip->type)); /* * We probably lost a leaf page (or more if this was an * internal page) from our prev/next_pgno chain. Flag * that this is expected; we don't want or need to * spew error messages about erroneous prev/next_pgnos, * since that's probably not the real problem. */ F_SET(vdp, VRFY_LEAFCHAIN_BROKEN); ret = DB_VERIFY_BAD; goto err; } /* * Cases 4 & 5: This is a btree or recno internal page. For each child, * recurse, keeping a running count of nrecs and making sure the level * is always reasonable. */ if ((ret = __db_vrfy_childcursor(vdp, &cc)) != 0) goto err; for (ret = __db_vrfy_ccset(cc, pgno, &child); ret == 0; ret = __db_vrfy_ccnext(cc, &child)) if (child->type == V_RECNO) { if (pip->type != P_IRECNO) { ret = __db_unknown_path( env, "__bam_vrfy_subtree"); goto err; } if ((ret = __bam_vrfy_subtree(dbp, vdp, child->pgno, NULL, NULL, flags, &child_level, &child_nrecs, &child_relen)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto done; } if (LF_ISSET(DB_ST_RELEN)) { if (relen == 0) relen = child_relen; /* * child_relen may be zero if the child subtree * is empty. */ else if (child_relen > 0 && relen != child_relen) { isbad = 1; EPRINT((env, "Page %lu: recno page returned bad re_len %lu", (u_long)child->pgno, (u_long)child_relen)); } if (relenp) *relenp = relen; } if (LF_ISSET(DB_ST_RECNUM)) { if (child->nrecs != child_nrecs) { isbad = 1; EPRINT((env, "Page %lu: record count incorrect: actual %lu, in record %lu", (u_long)child->pgno, (u_long)child_nrecs, (u_long)child->nrecs)); } nrecs += child_nrecs; } if (isbad == 0 && level != child_level + 1) { isbad = 1; EPRINT((env, "Page %lu: recno level incorrect: got %lu, expected %lu", (u_long)child->pgno, (u_long)child_level, (u_long)(level - 1))); } } else if (child->type == V_OVERFLOW) { /* * It is possible for one internal page to reference * a single overflow page twice, if all the items * in the subtree referenced by slot 0 are deleted, * then a similar number of items are put back * before the key that formerly had been in slot 1. * * (Btree doesn't look at the key in slot 0, so the * fact that the key formerly at slot 1 is the "wrong" * parent of the stuff in the slot 0 subtree isn't * really incorrect.) * * __db_vrfy_ovfl_structure is designed to be * efficiently called multiple times for multiple * references; call it here as many times as is * appropriate. */ /* Otherwise, __db_vrfy_childput would be broken. */ DB_ASSERT(env, child->refcnt >= 1); /* * An overflow referenced more than twice here * shouldn't happen. */ if (child->refcnt > 2) { isbad = 1; EPRINT((env, "Page %lu: overflow page %lu referenced more than twice from internal page", (u_long)pgno, (u_long)child->pgno)); } else for (j = 0; j < child->refcnt; j++) if ((ret = __db_vrfy_ovfl_structure(dbp, vdp, child->pgno, child->tlen, flags)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto done; } } if ((ret = __db_vrfy_ccclose(cc)) != 0) goto err; cc = NULL; /* We're done with case 4. */ if (pip->type == P_IRECNO) goto done; /* * Case 5. Btree internal pages. * As described above, we need to iterate through all the * items on the page and make sure that our children sort appropriately * with respect to them. * * For each entry, li will be the "left-hand" key for the entry * itself, which must sort lower than all entries on its child; * ri will be the key to its right, which must sort greater. */ if (h == NULL && (ret = __memp_fget(mpf, &pgno, vdp->thread_info, NULL, 0, &h)) != 0) goto err; for (i = 0; i < pip->entries; i += O_INDX) { li = GET_BINTERNAL(dbp, h, i); ri = (i + O_INDX < pip->entries) ? GET_BINTERNAL(dbp, h, i + O_INDX) : r; /* * The leftmost key is forcibly sorted less than all entries, * so don't bother passing it. */ if ((ret = __bam_vrfy_subtree(dbp, vdp, li->pgno, i == 0 ? NULL : li, ri, flags, &child_level, &child_nrecs, NULL)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto done; } if (LF_ISSET(DB_ST_RECNUM)) { /* * Keep a running tally on the actual record count so * we can return it to our parent (if we have one) or * compare it to the NRECS field if we're a root page. */ nrecs += child_nrecs; /* * Make sure the actual record count of the child * is equal to the value in the BINTERNAL structure. */ if (li->nrecs != child_nrecs) { isbad = 1; EPRINT((env, "Page %lu: item %lu has incorrect record count of %lu, should be %lu", (u_long)pgno, (u_long)i, (u_long)li->nrecs, (u_long)child_nrecs)); } } if (level != child_level + 1) { isbad = 1; EPRINT((env, "Page %lu: Btree level incorrect: got %lu, expected %lu", (u_long)li->pgno, (u_long)child_level, (u_long)(level - 1))); } } if (0) { leaf: level = LEAFLEVEL; if (LF_ISSET(DB_ST_RECNUM)) nrecs = pip->rec_cnt; /* XXX * We should verify that the record count on a leaf page * is the sum of the number of keys and the number of * records in its off-page dups. This requires looking * at the page again, however, and it may all be changing * soon, so for now we don't bother. */ if (LF_ISSET(DB_ST_RELEN) && relenp) *relenp = pip->re_len; } done: if (F_ISSET(pip, VRFY_INCOMPLETE) && isbad == 0 && ret == 0) { /* * During the page-by-page pass, item order verification was * not finished due to the presence of overflow items. If * isbad == 0, though, it's now safe to do so, as we've * traversed any child overflow pages. Do it. */ if (h == NULL && (ret = __memp_fget(mpf, &pgno, vdp->thread_info, NULL, 0, &h)) != 0) goto err; if ((ret = __bam_vrfy_itemorder(dbp, vdp, vdp->thread_info, h, pgno, 0, 1, 0, flags)) != 0) goto err; F_CLR(pip, VRFY_INCOMPLETE); } /* * It's possible to get to this point with a page that has no * items, but without having detected any sort of failure yet. * Having zero items is legal if it's a leaf--it may be the * root page in an empty tree, or the tree may have been * modified with the DB_REVSPLITOFF flag set (there's no way * to tell from what's on disk). For an internal page, * though, having no items is a problem (all internal pages * must have children). */ if (isbad == 0 && ret == 0) { if (h == NULL && (ret = __memp_fget(mpf, &pgno, vdp->thread_info, NULL, 0, &h)) != 0) goto err; if (NUM_ENT(h) == 0 && ISINTERNAL(h)) { isbad = 1; EPRINT((env, "Page %lu: internal page is empty and should not be", (u_long)pgno)); goto err; } } /* * Our parent has sent us BINTERNAL pointers to parent records * so that we can verify our place with respect to them. If it's * appropriate--we have a default sort function--verify this. */ if (isbad == 0 && ret == 0 && !LF_ISSET(DB_NOORDERCHK) && pip->type != P_IRECNO && pip->type != P_LRECNO) { if (h == NULL && (ret = __memp_fget(mpf, &pgno, vdp->thread_info, NULL, 0, &h)) != 0) goto err; /* * __bam_vrfy_treeorder needs to know what comparison function * to use. If DB_ST_DUPSET is set, we're in a duplicate tree * and we use the duplicate comparison function; otherwise, * use the btree one. If unset, use the default, of course. */ func = LF_ISSET(DB_ST_DUPSET) ? dbp->dup_compare : ((BTREE *)dbp->bt_internal)->bt_compare; if (func == NULL) func = __bam_defcmp; if ((ret = __bam_vrfy_treeorder(dbp, vdp->thread_info, h, l, r, func, flags)) != 0) { if (ret == DB_VERIFY_BAD) isbad = 1; else goto err; } } /* * This is guaranteed to succeed for leaf pages, but no harm done. * * Internal pages below the top level do not store their own * record numbers, so we skip them. */ if (LF_ISSET(DB_ST_RECNUM) && nrecs != pip->rec_cnt && toplevel) { isbad = 1; EPRINT((env, "Page %lu: bad record count: has %lu records, claims %lu", (u_long)pgno, (u_long)nrecs, (u_long)pip->rec_cnt)); } if (levelp) *levelp = level; if (nrecsp) *nrecsp = nrecs; pgset = vdp->pgset; if ((ret = __db_vrfy_pgset_get(pgset, vdp->thread_info, pgno, &p)) != 0) goto err; if (p != 0) { isbad = 1; EPRINT((env, "Page %lu: linked twice", (u_long)pgno)); } else if ((ret = __db_vrfy_pgset_inc(pgset, vdp->thread_info, pgno)) != 0) goto err; if (toplevel) /* * The last page's next_pgno in the leaf chain should have been * PGNO_INVALID. */ if (vdp->next_pgno != PGNO_INVALID) { isbad = 1; EPRINT((env, "Page %lu: unterminated leaf chain", (u_long)vdp->prev_pgno)); } err: if (toplevel) { /* Restore our caller's settings. */ vdp->next_pgno = next_pgno; vdp->prev_pgno = prev_pgno; vdp->leaf_type = leaf_type; } if (h != NULL && (t_ret = __memp_fput(mpf, vdp->thread_info, h, DB_PRIORITY_UNCHANGED)) != 0 && ret == 0) ret = t_ret; if ((t_ret = __db_vrfy_putpageinfo(env, vdp, pip)) != 0 && ret == 0) ret = t_ret; if (cc != NULL && ((t_ret = __db_vrfy_ccclose(cc)) != 0) && ret == 0) ret = t_ret; return ((ret == 0 && isbad == 1) ? DB_VERIFY_BAD : ret); } /* * __bam_vrfy_treeorder -- * Verify that the lowest key on a page sorts greater than the * BINTERNAL which points to it (lp), and the highest key * sorts less than the BINTERNAL above that (rp). * * If lp is NULL, this means that it was the leftmost key on the * parent, which (regardless of sort function) sorts less than * all keys. No need to check it. * * If rp is NULL, lp was the highest key on the parent, so there's * no higher key we must sort less than. */ static int __bam_vrfy_treeorder(dbp, ip, h, lp, rp, func, flags) DB *dbp; DB_THREAD_INFO *ip; PAGE *h; BINTERNAL *lp, *rp; int (*func) __P((DB *, const DBT *, const DBT *)); u_int32_t flags; { BOVERFLOW *bo; DBC *dbc; DBT dbt; ENV *env; db_indx_t last; int ret, cmp; env = dbp->env; memset(&dbt, 0, sizeof(DBT)); F_SET(&dbt, DB_DBT_MALLOC); ret = 0; /* * Empty pages are sorted correctly by definition. We check * to see whether they ought to be empty elsewhere; leaf * pages legally may be. */ if (NUM_ENT(h) == 0) return (0); switch (TYPE(h)) { case P_IBTREE: case P_LDUP: last = NUM_ENT(h) - O_INDX; break; case P_LBTREE: last = NUM_ENT(h) - P_INDX; break; default: return (__db_unknown_path(env, "__bam_vrfy_treeorder")); } /* Populate a dummy cursor. */ if ((ret = __db_cursor_int(dbp, ip, NULL, DB_BTREE, PGNO_INVALID, 0, DB_LOCK_INVALIDID, &dbc)) != 0) return (ret); /* * The key on page h, the child page, is more likely to be * an overflow page, so we pass its offset, rather than lp/rp's, * into __bam_cmp. This will take advantage of __db_moff. */ /* * Skip first-item check if we're an internal page--the first * entry on an internal page is treated specially by __bam_cmp, * so what's on the page shouldn't matter. (Plus, since we're passing * our page and item 0 as to __bam_cmp, we'll sort before our * parent and falsely report a failure.) */ if (lp != NULL && TYPE(h) != P_IBTREE) { if ((ret = __db_cursor_int(dbp, ip, NULL, DB_BTREE, PGNO_INVALID, 0, DB_LOCK_INVALIDID, &dbc)) != 0) return (ret); if (lp->type == B_KEYDATA) { dbt.data = lp->data; dbt.size = lp->len; } else if (lp->type == B_OVERFLOW) { bo = (BOVERFLOW *)lp->data; if ((ret = __db_goff(dbc, &dbt, bo->tlen, bo->pgno, NULL, NULL)) != 0) return (ret); } else return ( __db_unknown_path(env, "__bam_vrfy_treeorder")); /* On error, fall through, free if needed, and return. */ if ((ret = __bam_cmp(dbc, &dbt, h, 0, func, &cmp)) == 0) { if (cmp > 0) { EPRINT((env, "Page %lu: first item on page sorted greater than parent entry", (u_long)PGNO(h))); ret = DB_VERIFY_BAD; } } else EPRINT((env, "Page %lu: first item on page had comparison error", (u_long)PGNO(h))); if (dbt.data != lp->data) __os_ufree(env, dbt.data); if (ret != 0) return (ret); } if (rp != NULL) { if (rp->type == B_KEYDATA) { dbt.data = rp->data; dbt.size = rp->len; } else if (rp->type == B_OVERFLOW) { bo = (BOVERFLOW *)rp->data; if ((ret = __db_goff(dbc, &dbt, bo->tlen, bo->pgno, NULL, NULL)) != 0) return (ret); } else return ( __db_unknown_path(env, "__bam_vrfy_treeorder")); /* On error, fall through, free if needed, and return. */ if ((ret = __bam_cmp(dbc, &dbt, h, last, func, &cmp)) == 0) { if (cmp < 0) { EPRINT((env, "Page %lu: last item on page sorted greater than parent entry", (u_long)PGNO(h))); ret = DB_VERIFY_BAD; } } else EPRINT((env, "Page %lu: last item on page had comparison error", (u_long)PGNO(h))); if (dbt.data != rp->data) __os_ufree(env, dbt.data); } return (ret); } /* * __bam_salvage -- * Safely dump out anything that looks like a key on an alleged * btree leaf page, also mark overflow pages as seen. For internal btree * pages, just mark any overflow pages as seen. * * PUBLIC: int __bam_salvage __P((DB *, VRFY_DBINFO *, * PUBLIC: db_pgno_t, u_int32_t, PAGE *, void *, * PUBLIC: int (*)(void *, const void *), DBT *, u_int32_t)); */ int __bam_salvage(dbp, vdp, pgno, pgtype, h, handle, callback, key, flags) DB *dbp; VRFY_DBINFO *vdp; db_pgno_t pgno; u_int32_t pgtype; PAGE *h; void *handle; int (*callback) __P((void *, const void *)); DBT *key; u_int32_t flags; { BKEYDATA *bk; BOVERFLOW *bo; DBT dbt, repldbt, unknown_key, unknown_data; ENV *env; VRFY_ITEM *pgmap; db_indx_t i, last, beg, end, *inp; db_pgno_t ovflpg; u_int32_t himark, ovfl_bufsz; void *ovflbuf; int adj, ret, t_ret, t2_ret; #ifdef HAVE_COMPRESSION DBT kcpy, *last_key; int unknown_dup_key; #endif env = dbp->env; ovflbuf = pgmap = NULL; inp = P_INP(dbp, h); memset(&dbt, 0, sizeof(DBT)); dbt.flags = DB_DBT_REALLOC; memset(&repldbt, 0, sizeof(DBT)); #ifdef HAVE_COMPRESSION memset(&kcpy, 0, sizeof(DBT)); unknown_dup_key = LF_ISSET(DB_SA_UNKNOWNKEY); last_key = unknown_dup_key ? NULL : key; #endif LF_CLR(DB_SA_UNKNOWNKEY); DB_INIT_DBT(unknown_key, "UNKNOWN_KEY", sizeof("UNKNOWN_KEY") - 1); DB_INIT_DBT(unknown_data, "UNKNOWN_DATA", sizeof("UNKNOWN_DATA") - 1); /* * Allocate a buffer for overflow items. Start at one page; * __db_safe_goff will realloc as needed. */ if ((ret = __os_malloc(env, dbp->pgsize, &ovflbuf)) != 0) goto err; ovfl_bufsz = dbp->pgsize; if (LF_ISSET(DB_AGGRESSIVE) && (ret = __os_calloc(env, dbp->pgsize, sizeof(pgmap[0]), &pgmap)) != 0) goto err; /* * Loop through the inp array, spitting out key/data pairs. * * If we're salvaging normally, loop from 0 through NUM_ENT(h). If * we're being aggressive, loop until we hit the end of the page -- * NUM_ENT() may be bogus. */ himark = dbp->pgsize; for (i = 0, last = UINT16_MAX;; i += O_INDX) { /* * If we're not aggressive, or if we're on an internal page, * break when we hit NUM_ENT(h). */ if ((!LF_ISSET(DB_AGGRESSIVE) || pgtype == P_IBTREE) && i >= NUM_ENT(h)) break; /* Verify the current item. */ t_ret = __db_vrfy_inpitem(dbp, h, pgno, i, 1, flags, &himark, NULL); if (t_ret != 0) { /* * If this is a btree leaf and we've printed out a key * but not its associated data item, fix this imbalance * by printing an "UNKNOWN_DATA". */ if (pgtype == P_LBTREE && i % P_INDX == 1 && last == i - 1 && (t2_ret = __db_vrfy_prdbt( &unknown_data, 0, " ", handle, callback, 0, vdp)) != 0) { if (ret == 0) ret = t2_ret; goto err; } /* * Don't return DB_VERIFY_FATAL; it's private and means * only that we can't go on with this page, not with * the whole database. It's not even an error if we've * run into it after NUM_ENT(h). */ if (t_ret == DB_VERIFY_FATAL) { if (i < NUM_ENT(h) && ret == 0) ret = DB_VERIFY_BAD; break; } continue; } /* * If this returned 0, it's safe to print or (carefully) * try to fetch. * * We only print deleted items if DB_AGGRESSIVE is set. */ bk = GET_BKEYDATA(dbp, h, i); if (!LF_ISSET(DB_AGGRESSIVE) && B_DISSET(bk->type)) continue; /* * If this is a btree leaf and we're about to print out a data * item for which we didn't print out a key, fix this imbalance * by printing an "UNKNOWN_KEY". */ if (pgtype == P_LBTREE && i % P_INDX == 1 && last != i - 1) { #ifdef HAVE_COMPRESSION last_key = NULL; #endif if ((t_ret = __db_vrfy_prdbt(&unknown_key, 0, " ", handle, callback, 0, vdp)) != 0) { if (ret == 0) ret = t_ret; goto err; } } last = i; /* * We're going to go try to print the next item. If key is * non-NULL, we're a dup page, so we've got to print the key * first, unless DB_SA_SKIPFIRSTKEY is set and we're on the * first entry. */ if (key != NULL && (i != 0 || !LF_ISSET(DB_SA_SKIPFIRSTKEY))) { #ifdef HAVE_COMPRESSION last_key = unknown_dup_key ? NULL : key; #endif if ((t_ret = __db_vrfy_prdbt(key, 0, " ", handle, callback, 0, vdp)) != 0) { if (ret == 0) ret = t_ret; goto err; } } beg = end = inp[i]; switch (B_TYPE(bk->type)) { case B_DUPLICATE: if (pgtype == P_IBTREE) break; end = beg + BOVERFLOW_SIZE - 1; /* * If we're not on a normal btree leaf page, there * shouldn't be off-page dup sets. Something's * confused; just drop it, and the code to pick up * unlinked offpage dup sets will print it out * with key "UNKNOWN" later. */ if (pgtype != P_LBTREE) break; bo = (BOVERFLOW *)bk; /* * If the page number is unreasonable, or if this is * supposed to be a key item, output "UNKNOWN_KEY" -- * the best we can do is run into the data items in * the unlinked offpage dup pass. */ if (!IS_VALID_PGNO(bo->pgno) || (i % P_INDX == 0)) { /* Not much to do on failure. */ #ifdef HAVE_COMPRESSION if (key == NULL && i % P_INDX == 0) last_key = NULL; #endif if ((t_ret = __db_vrfy_prdbt( i % P_INDX == 0 ? &unknown_key : &unknown_data, 0, " ", handle, callback, 0, vdp)) != 0) { if (ret == 0) ret = t_ret; goto err; } break; } /* Don't stop on error. */ if ((t_ret = __db_salvage_duptree(dbp, vdp, bo->pgno, &dbt, handle, callback, flags | DB_SA_SKIPFIRSTKEY #ifdef HAVE_COMPRESSION | (last_key == NULL ? DB_SA_UNKNOWNKEY : 0) #endif )) != 0 && ret == 0) ret = t_ret; break; case B_KEYDATA: if (pgtype == P_IBTREE) break; end = (db_indx_t)DB_ALIGN( beg + bk->len, sizeof(u_int32_t)) - 1; dbt.data = bk->data; dbt.size = bk->len; #ifdef HAVE_COMPRESSION if (DB_IS_COMPRESSED(dbp) && last_key != NULL && (key != NULL || (i % P_INDX == 1))) { /* Decompress the key/data pair - the key is in last_key, and the data is in dbt */ if ((t_ret = __bam_compress_salvage(dbp, vdp, handle, callback, last_key, &dbt)) != 0) { if (t_ret == DB_VERIFY_FATAL) { if (ret == 0) ret = DB_VERIFY_BAD; if (!LF_ISSET(DB_AGGRESSIVE)) goto err; } else if (ret == 0) { ret = t_ret; goto err; } } } else { if (key == NULL && i % P_INDX == 0) { if ((ret = __os_realloc( env, dbt.size, &kcpy.data)) != 0) goto err; memcpy(kcpy.data, dbt.data, dbt.size); kcpy.size = dbt.size; last_key = &kcpy; } #endif if ((t_ret = __db_vrfy_prdbt(&dbt, 0, " ", handle, callback, 0, vdp)) != 0) { if (ret == 0) ret = t_ret; goto err; } #ifdef HAVE_COMPRESSION } #endif break; case B_OVERFLOW: if (pgtype != P_IBTREE) end = beg + BOVERFLOW_SIZE - 1; bo = (BOVERFLOW *)bk; /* * Check for replicated overflow keys, so that we only * call __db_safe_goff once per overflow page. If we * get the same offset as the previous key just re-use * the previous dbt. * * P_IBTREE pages will never have replicated overflow * keys. */ adj = pgtype == P_IBTREE ? O_INDX : P_INDX; if (pgtype == P_IBTREE) { /* * If we're looking at a P_IBTREE, we just want * to mark the overflow page as seen. * * Note that this call to __db_safe_goff differs * from the non-P_IBTREE call. * * Only call __db_safe_goff if the overflow page * hasn't been seen. */ ovflpg = ((BOVERFLOW *) ((BINTERNAL *)bk)->data)->pgno; if (__db_salvage_isdone(vdp, ovflpg) == 0 && (t_ret =__db_safe_goff(dbp, vdp, ovflpg, &dbt, &ovflbuf, &ovfl_bufsz, flags)) != 0 && ret == 0) ret = t_ret; break; } else if (i > adj - 1 && i % adj == 0 && inp[i] == inp[i - adj]) dbt = repldbt; else { /* Don't stop on error. */ if ((t_ret = __db_safe_goff(dbp, vdp, bo->pgno, &dbt, &ovflbuf, &ovfl_bufsz, flags)) != 0 && ret == 0) ret = t_ret; /* * If this is a key, save it in case the next * key is a replicated overflow, so we don't * call __db_safe_goff again. Copy out dbt.data * in case that pointer gets realloc'd when * getting a data item. */ if (i % P_INDX == 0) { if (t_ret == 0) { if ((t_ret = __os_realloc(env, dbt.size, &repldbt.data)) != 0) { if (ret == 0) ret = t_ret; goto err; } memcpy(repldbt.data, dbt.data, dbt.size); repldbt.size = dbt.size; } else { if (__os_realloc(env, unknown_key.size, &repldbt.data) != 0) goto err; memcpy(repldbt.data, unknown_key.data, unknown_key.size); repldbt.size = unknown_key.size; } } } #ifdef HAVE_COMPRESSION if (DB_IS_COMPRESSED(dbp) && last_key && t_ret == 0 && (key != NULL || (i % P_INDX == 1))) { /* Decompress the key/data pair - the key is in last_key, and the data is in dbt */ if ((t_ret = __bam_compress_salvage(dbp, vdp, handle, callback, last_key, &dbt)) != 0) { if (t_ret == DB_VERIFY_FATAL) { if (ret == 0) ret = DB_VERIFY_BAD; if (!LF_ISSET(DB_AGGRESSIVE)) goto err; } else if (ret == 0) { ret = t_ret; goto err; } } } else { if (key == NULL && i % P_INDX == 0) { if (t_ret == 0) { if ((ret = __os_realloc(env, dbt.size, &kcpy.data)) != 0) goto err; memcpy(kcpy.data, dbt.data, dbt.size); kcpy.size = dbt.size; last_key = &kcpy; } else last_key = NULL; } #endif if ((t_ret = __db_vrfy_prdbt( t_ret == 0 ? &dbt : &unknown_key, 0, " ", handle, callback, 0, vdp)) != 0 && ret == 0) ret = t_ret; #ifdef HAVE_COMPRESSION } #endif break; default: /* * We should never get here; __db_vrfy_inpitem should * not be returning 0 if bk->type is unrecognizable. */ t_ret = __db_unknown_path(env, "__bam_salvage"); if (ret == 0) ret = t_ret; goto err; } /* * If we're being aggressive, mark the beginning and end of * the item; we'll come back and print whatever "junk" is in * the gaps in case we had any bogus inp elements and thereby * missed stuff. */ if (LF_ISSET(DB_AGGRESSIVE) && pgtype != P_IBTREE) { pgmap[beg] = VRFY_ITEM_BEGIN; pgmap[end] = VRFY_ITEM_END; } } err: if (pgmap != NULL) __os_free(env, pgmap); if (ovflbuf != NULL) __os_free(env, ovflbuf); if (repldbt.data != NULL) __os_free(env, repldbt.data); #ifdef HAVE_COMPRESSION if (kcpy.data != NULL) __os_free(env, kcpy.data); #endif /* Mark this page as done. */ if ((t_ret = __db_salvage_markdone(vdp, pgno)) != 0 && ret == 0) ret = t_ret; return (ret); } /* * __bam_salvage_walkdupint -- * Walk a known-good btree or recno internal page which is part of * a dup tree, calling __db_salvage_duptree on each child page. * * PUBLIC: int __bam_salvage_walkdupint __P((DB *, VRFY_DBINFO *, PAGE *, * PUBLIC: DBT *, void *, int (*)(void *, const void *), u_int32_t)); */ int __bam_salvage_walkdupint(dbp, vdp, h, key, handle, callback, flags) DB *dbp; VRFY_DBINFO *vdp; PAGE *h; DBT *key; void *handle; int (*callback) __P((void *, const void *)); u_int32_t flags; { BINTERNAL *bi; ENV *env; RINTERNAL *ri; int ret, t_ret; db_indx_t i; env = dbp->env; ret = 0; for (i = 0; i < NUM_ENT(h); i++) { switch (TYPE(h)) { case P_IBTREE: bi = GET_BINTERNAL(dbp, h, i); if ((t_ret = __db_salvage_duptree(dbp, vdp, bi->pgno, key, handle, callback, flags)) != 0) ret = t_ret; break; case P_IRECNO: ri = GET_RINTERNAL(dbp, h, i); if ((t_ret = __db_salvage_duptree(dbp, vdp, ri->pgno, key, handle, callback, flags)) != 0) ret = t_ret; break; default: return (__db_unknown_path( env, "__bam_salvage_walkdupint")); } /* Pass DB_SA_SKIPFIRSTKEY, if set, on to the 0th child only. */ flags &= ~LF_ISSET(DB_SA_SKIPFIRSTKEY); } return (ret); } /* * __bam_meta2pgset -- * Given a known-good meta page, return in pgsetp a 0-terminated list of * db_pgno_t's corresponding to the pages in the btree. * * We do this by a somewhat sleazy method, to avoid having to traverse the * btree structure neatly: we walk down the left side to the very * first leaf page, then we mark all the pages in the chain of * NEXT_PGNOs (being wary of cycles and invalid ones), then we * consolidate our scratch array into a nice list, and return. This * avoids the memory management hassles of recursion and the * trouble of walking internal pages--they just don't matter, except * for the left branch. * * PUBLIC: int __bam_meta2pgset __P((DB *, VRFY_DBINFO *, BTMETA *, * PUBLIC: u_int32_t, DB *)); */ int __bam_meta2pgset(dbp, vdp, btmeta, flags, pgset) DB *dbp; VRFY_DBINFO *vdp; BTMETA *btmeta; u_int32_t flags; DB *pgset; { BINTERNAL *bi; DB_MPOOLFILE *mpf; PAGE *h; RINTERNAL *ri; db_pgno_t current, p; int err_ret, ret; DB_ASSERT(dbp->env, pgset != NULL); mpf = dbp->mpf; h = NULL; ret = err_ret = 0; for (current = btmeta->root;;) { if (!IS_VALID_PGNO(current) || current == PGNO(btmeta)) { err_ret = DB_VERIFY_BAD; goto err; } if ((ret = __memp_fget(mpf, ¤t, vdp->thread_info, NULL, 0, &h)) != 0) { err_ret = ret; goto err; } switch (TYPE(h)) { case P_IBTREE: case P_IRECNO: if ((ret = __bam_vrfy(dbp, vdp, h, current, flags | DB_NOORDERCHK)) != 0) { err_ret = ret; goto err; } if (TYPE(h) == P_IBTREE) { bi = GET_BINTERNAL(dbp, h, 0); current = bi->pgno; } else { /* P_IRECNO */ ri = GET_RINTERNAL(dbp, h, 0); current = ri->pgno; } break; case P_LBTREE: case P_LRECNO: goto traverse; default: err_ret = DB_VERIFY_BAD; goto err; } if ((ret = __memp_fput(mpf, vdp->thread_info, h, DB_PRIORITY_UNCHANGED)) != 0) err_ret = ret; h = NULL; } /* * At this point, current is the pgno of leaf page h, the 0th in the * tree we're concerned with. */ traverse: while (IS_VALID_PGNO(current) && current != PGNO_INVALID) { if (h == NULL && (ret = __memp_fget(mpf, ¤t, vdp->thread_info, NULL, 0, &h)) != 0) { err_ret = ret; break; } if ((ret = __db_vrfy_pgset_get(pgset, vdp->thread_info, current, (int *)&p)) != 0) goto err; if (p != 0) { /* * We've found a cycle. Return success anyway-- * our caller may as well use however much of * the pgset we've come up with. */ break; } if ((ret = __db_vrfy_pgset_inc(pgset, vdp->thread_info, current)) != 0) goto err; current = NEXT_PGNO(h); if ((ret = __memp_fput(mpf, vdp->thread_info, h, DB_PRIORITY_UNCHANGED)) != 0) err_ret = ret; h = NULL; } err: if (h != NULL) (void)__memp_fput(mpf, vdp->thread_info, h, DB_PRIORITY_UNCHANGED); return (ret == 0 ? err_ret : ret); } /* * __bam_safe_getdata -- * * Utility function for __bam_vrfy_itemorder. Safely gets the datum at * index i, page h, and sticks it in DBT dbt. If ovflok is 1 and i's an * overflow item, we do a safe_goff to get the item and signal that we need * to free dbt->data; if ovflok is 0, we leaves the DBT zeroed. */ static int __bam_safe_getdata(dbp, ip, h, i, ovflok, dbt, freedbtp) DB *dbp; DB_THREAD_INFO *ip; PAGE *h; u_int32_t i; int ovflok; DBT *dbt; int *freedbtp; { BKEYDATA *bk; BOVERFLOW *bo; DBC *dbc; int ret; memset(dbt, 0, sizeof(DBT)); *freedbtp = 0; bk = GET_BKEYDATA(dbp, h, i); if (B_TYPE(bk->type) == B_OVERFLOW) { if (!ovflok) return (0); if ((ret = __db_cursor_int(dbp, ip, NULL, DB_BTREE, PGNO_INVALID, 0, DB_LOCK_INVALIDID, &dbc)) != 0) return (ret); bo = (BOVERFLOW *)bk; F_SET(dbt, DB_DBT_MALLOC); *freedbtp = 1; return (__db_goff(dbc, dbt, bo->tlen, bo->pgno, NULL, NULL)); } else { dbt->data = bk->data; dbt->size = bk->len; } return (0); }