/* * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "event2/event-config.h" #include "evconfig-private.h" #ifdef _WIN32 #include <winsock2.h> #define WIN32_LEAN_AND_MEAN #include <windows.h> #undef WIN32_LEAN_AND_MEAN #endif #include <sys/types.h> #if !defined(_WIN32) && defined(EVENT__HAVE_SYS_TIME_H) #include <sys/time.h> #endif #include <sys/queue.h> #include <stdio.h> #include <stdlib.h> #ifndef _WIN32 #include <unistd.h> #endif #include <errno.h> #include <limits.h> #include <signal.h> #include <string.h> #include <time.h> #include "event-internal.h" #include "evmap-internal.h" #include "mm-internal.h" #include "changelist-internal.h" /** An entry for an evmap_io list: notes all the events that want to read or write on a given fd, and the number of each. */ struct evmap_io { struct event_dlist events; ev_uint16_t nread; ev_uint16_t nwrite; ev_uint16_t nclose; }; /* An entry for an evmap_signal list: notes all the events that want to know when a signal triggers. */ struct evmap_signal { struct event_dlist events; }; /* On some platforms, fds start at 0 and increment by 1 as they are allocated, and old numbers get used. For these platforms, we implement io maps just like signal maps: as an array of pointers to struct evmap_io. But on other platforms (windows), sockets are not 0-indexed, not necessarily consecutive, and not necessarily reused. There, we use a hashtable to implement evmap_io. */ #ifdef EVMAP_USE_HT struct event_map_entry { HT_ENTRY(event_map_entry) map_node; evutil_socket_t fd; union { /* This is a union in case we need to make more things that can be in the hashtable. */ struct evmap_io evmap_io; } ent; }; /* Helper used by the event_io_map hashtable code; tries to return a good hash * of the fd in e->fd. */ static inline unsigned hashsocket(struct event_map_entry *e) { /* On win32, in practice, the low 2-3 bits of a SOCKET seem not to * matter. Our hashtable implementation really likes low-order bits, * though, so let's do the rotate-and-add trick. */ unsigned h = (unsigned) e->fd; h += (h >> 2) | (h << 30); return h; } /* Helper used by the event_io_map hashtable code; returns true iff e1 and e2 * have the same e->fd. */ static inline int eqsocket(struct event_map_entry *e1, struct event_map_entry *e2) { return e1->fd == e2->fd; } HT_PROTOTYPE(event_io_map, event_map_entry, map_node, hashsocket, eqsocket) HT_GENERATE(event_io_map, event_map_entry, map_node, hashsocket, eqsocket, 0.5, mm_malloc, mm_realloc, mm_free) #define GET_IO_SLOT(x, map, slot, type) \ do { \ struct event_map_entry key_, *ent_; \ key_.fd = slot; \ ent_ = HT_FIND(event_io_map, map, &key_); \ (x) = ent_ ? &ent_->ent.type : NULL; \ } while (0); #define GET_IO_SLOT_AND_CTOR(x, map, slot, type, ctor, fdinfo_len) \ do { \ struct event_map_entry key_, *ent_; \ key_.fd = slot; \ HT_FIND_OR_INSERT_(event_io_map, map_node, hashsocket, map, \ event_map_entry, &key_, ptr, \ { \ ent_ = *ptr; \ }, \ { \ ent_ = mm_calloc(1,sizeof(struct event_map_entry)+fdinfo_len); \ if (EVUTIL_UNLIKELY(ent_ == NULL)) \ return (-1); \ ent_->fd = slot; \ (ctor)(&ent_->ent.type); \ HT_FOI_INSERT_(map_node, map, &key_, ent_, ptr) \ }); \ (x) = &ent_->ent.type; \ } while (0) void evmap_io_initmap_(struct event_io_map *ctx) { HT_INIT(event_io_map, ctx); } void evmap_io_clear_(struct event_io_map *ctx) { struct event_map_entry **ent, **next, *this; for (ent = HT_START(event_io_map, ctx); ent; ent = next) { this = *ent; next = HT_NEXT_RMV(event_io_map, ctx, ent); mm_free(this); } HT_CLEAR(event_io_map, ctx); /* remove all storage held by the ctx. */ } #endif /* Set the variable 'x' to the field in event_map 'map' with fields of type 'struct type *' corresponding to the fd or signal 'slot'. Set 'x' to NULL if there are no entries for 'slot'. Does no bounds-checking. */ #define GET_SIGNAL_SLOT(x, map, slot, type) \ (x) = (struct type *)((map)->entries[slot]) /* As GET_SLOT, but construct the entry for 'slot' if it is not present, by allocating enough memory for a 'struct type', and initializing the new value by calling the function 'ctor' on it. Makes the function return -1 on allocation failure. */ #define GET_SIGNAL_SLOT_AND_CTOR(x, map, slot, type, ctor, fdinfo_len) \ do { \ if ((map)->entries[slot] == NULL) { \ (map)->entries[slot] = \ mm_calloc(1,sizeof(struct type)+fdinfo_len); \ if (EVUTIL_UNLIKELY((map)->entries[slot] == NULL)) \ return (-1); \ (ctor)((struct type *)(map)->entries[slot]); \ } \ (x) = (struct type *)((map)->entries[slot]); \ } while (0) /* If we aren't using hashtables, then define the IO_SLOT macros and functions as thin aliases over the SIGNAL_SLOT versions. */ #ifndef EVMAP_USE_HT #define GET_IO_SLOT(x,map,slot,type) GET_SIGNAL_SLOT(x,map,slot,type) #define GET_IO_SLOT_AND_CTOR(x,map,slot,type,ctor,fdinfo_len) \ GET_SIGNAL_SLOT_AND_CTOR(x,map,slot,type,ctor,fdinfo_len) #define FDINFO_OFFSET sizeof(struct evmap_io) void evmap_io_initmap_(struct event_io_map* ctx) { evmap_signal_initmap_(ctx); } void evmap_io_clear_(struct event_io_map* ctx) { evmap_signal_clear_(ctx); } #endif /** Expand 'map' with new entries of width 'msize' until it is big enough to store a value in 'slot'. */ static int evmap_make_space(struct event_signal_map *map, int slot, int msize) { if (map->nentries <= slot) { int nentries = map->nentries ? map->nentries : 32; void **tmp; if (slot > INT_MAX / 2) return (-1); while (nentries <= slot) nentries <<= 1; if (nentries > INT_MAX / msize) return (-1); tmp = (void **)mm_realloc(map->entries, nentries * msize); if (tmp == NULL) return (-1); memset(&tmp[map->nentries], 0, (nentries - map->nentries) * msize); map->nentries = nentries; map->entries = tmp; } return (0); } void evmap_signal_initmap_(struct event_signal_map *ctx) { ctx->nentries = 0; ctx->entries = NULL; } void evmap_signal_clear_(struct event_signal_map *ctx) { if (ctx->entries != NULL) { int i; for (i = 0; i < ctx->nentries; ++i) { if (ctx->entries[i] != NULL) mm_free(ctx->entries[i]); } mm_free(ctx->entries); ctx->entries = NULL; } ctx->nentries = 0; } /* code specific to file descriptors */ /** Constructor for struct evmap_io */ static void evmap_io_init(struct evmap_io *entry) { LIST_INIT(&entry->events); entry->nread = 0; entry->nwrite = 0; entry->nclose = 0; } /* return -1 on error, 0 on success if nothing changed in the event backend, * and 1 on success if something did. */ int evmap_io_add_(struct event_base *base, evutil_socket_t fd, struct event *ev) { const struct eventop *evsel = base->evsel; struct event_io_map *io = &base->io; struct evmap_io *ctx = NULL; int nread, nwrite, nclose, retval = 0; short res = 0, old = 0; struct event *old_ev; EVUTIL_ASSERT(fd == ev->ev_fd); if (fd < 0) return 0; #ifndef EVMAP_USE_HT if (fd >= io->nentries) { if (evmap_make_space(io, fd, sizeof(struct evmap_io *)) == -1) return (-1); } #endif GET_IO_SLOT_AND_CTOR(ctx, io, fd, evmap_io, evmap_io_init, evsel->fdinfo_len); nread = ctx->nread; nwrite = ctx->nwrite; nclose = ctx->nclose; if (nread) old |= EV_READ; if (nwrite) old |= EV_WRITE; if (nclose) old |= EV_CLOSED; if (ev->ev_events & EV_READ) { if (++nread == 1) res |= EV_READ; } if (ev->ev_events & EV_WRITE) { if (++nwrite == 1) res |= EV_WRITE; } if (ev->ev_events & EV_CLOSED) { if (++nclose == 1) res |= EV_CLOSED; } if (EVUTIL_UNLIKELY(nread > 0xffff || nwrite > 0xffff || nclose > 0xffff)) { event_warnx("Too many events reading or writing on fd %d", (int)fd); return -1; } if (EVENT_DEBUG_MODE_IS_ON() && (old_ev = LIST_FIRST(&ctx->events)) && (old_ev->ev_events&EV_ET) != (ev->ev_events&EV_ET)) { event_warnx("Tried to mix edge-triggered and non-edge-triggered" " events on fd %d", (int)fd); return -1; } if (res) { void *extra = ((char*)ctx) + sizeof(struct evmap_io); /* XXX(niels): we cannot mix edge-triggered and * level-triggered, we should probably assert on * this. */ if (evsel->add(base, ev->ev_fd, old, (ev->ev_events & EV_ET) | res, extra) == -1) return (-1); retval = 1; } ctx->nread = (ev_uint16_t) nread; ctx->nwrite = (ev_uint16_t) nwrite; ctx->nclose = (ev_uint16_t) nclose; LIST_INSERT_HEAD(&ctx->events, ev, ev_io_next); return (retval); } /* return -1 on error, 0 on success if nothing changed in the event backend, * and 1 on success if something did. */ int evmap_io_del_(struct event_base *base, evutil_socket_t fd, struct event *ev) { const struct eventop *evsel = base->evsel; struct event_io_map *io = &base->io; struct evmap_io *ctx; int nread, nwrite, nclose, retval = 0; short res = 0, old = 0; if (fd < 0) return 0; EVUTIL_ASSERT(fd == ev->ev_fd); #ifndef EVMAP_USE_HT if (fd >= io->nentries) return (-1); #endif GET_IO_SLOT(ctx, io, fd, evmap_io); nread = ctx->nread; nwrite = ctx->nwrite; nclose = ctx->nclose; if (nread) old |= EV_READ; if (nwrite) old |= EV_WRITE; if (nclose) old |= EV_CLOSED; if (ev->ev_events & EV_READ) { if (--nread == 0) res |= EV_READ; EVUTIL_ASSERT(nread >= 0); } if (ev->ev_events & EV_WRITE) { if (--nwrite == 0) res |= EV_WRITE; EVUTIL_ASSERT(nwrite >= 0); } if (ev->ev_events & EV_CLOSED) { if (--nclose == 0) res |= EV_CLOSED; EVUTIL_ASSERT(nclose >= 0); } if (res) { void *extra = ((char*)ctx) + sizeof(struct evmap_io); if (evsel->del(base, ev->ev_fd, old, (ev->ev_events & EV_ET) | res, extra) == -1) { retval = -1; } else { retval = 1; } } ctx->nread = nread; ctx->nwrite = nwrite; ctx->nclose = nclose; LIST_REMOVE(ev, ev_io_next); return (retval); } void evmap_io_active_(struct event_base *base, evutil_socket_t fd, short events) { struct event_io_map *io = &base->io; struct evmap_io *ctx; struct event *ev; #ifndef EVMAP_USE_HT if (fd < 0 || fd >= io->nentries) return; #endif GET_IO_SLOT(ctx, io, fd, evmap_io); if (NULL == ctx) return; LIST_FOREACH(ev, &ctx->events, ev_io_next) { if (ev->ev_events & (events & ~EV_ET)) event_active_nolock_(ev, ev->ev_events & events, 1); } } /* code specific to signals */ static void evmap_signal_init(struct evmap_signal *entry) { LIST_INIT(&entry->events); } int evmap_signal_add_(struct event_base *base, int sig, struct event *ev) { const struct eventop *evsel = base->evsigsel; struct event_signal_map *map = &base->sigmap; struct evmap_signal *ctx = NULL; if (sig < 0 || sig >= NSIG) return (-1); if (sig >= map->nentries) { if (evmap_make_space( map, sig, sizeof(struct evmap_signal *)) == -1) return (-1); } GET_SIGNAL_SLOT_AND_CTOR(ctx, map, sig, evmap_signal, evmap_signal_init, base->evsigsel->fdinfo_len); if (LIST_EMPTY(&ctx->events)) { if (evsel->add(base, ev->ev_fd, 0, EV_SIGNAL, NULL) == -1) return (-1); } LIST_INSERT_HEAD(&ctx->events, ev, ev_signal_next); return (1); } int evmap_signal_del_(struct event_base *base, int sig, struct event *ev) { const struct eventop *evsel = base->evsigsel; struct event_signal_map *map = &base->sigmap; struct evmap_signal *ctx; if (sig < 0 || sig >= map->nentries) return (-1); GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal); LIST_REMOVE(ev, ev_signal_next); if (LIST_FIRST(&ctx->events) == NULL) { if (evsel->del(base, ev->ev_fd, 0, EV_SIGNAL, NULL) == -1) return (-1); } return (1); } void evmap_signal_active_(struct event_base *base, evutil_socket_t sig, int ncalls) { struct event_signal_map *map = &base->sigmap; struct evmap_signal *ctx; struct event *ev; if (sig < 0 || sig >= map->nentries) return; GET_SIGNAL_SLOT(ctx, map, sig, evmap_signal); if (!ctx) return; LIST_FOREACH(ev, &ctx->events, ev_signal_next) event_active_nolock_(ev, EV_SIGNAL, ncalls); } void * evmap_io_get_fdinfo_(struct event_io_map *map, evutil_socket_t fd) { struct evmap_io *ctx; GET_IO_SLOT(ctx, map, fd, evmap_io); if (ctx) return ((char*)ctx) + sizeof(struct evmap_io); else return NULL; } /* Callback type for evmap_io_foreach_fd */ typedef int (*evmap_io_foreach_fd_cb)( struct event_base *, evutil_socket_t, struct evmap_io *, void *); /* Multipurpose helper function: Iterate over every file descriptor event_base * for which we could have EV_READ or EV_WRITE events. For each such fd, call * fn(base, signum, evmap_io, arg), where fn is the user-provided * function, base is the event_base, signum is the signal number, evmap_io * is an evmap_io structure containing a list of events pending on the * file descriptor, and arg is the user-supplied argument. * * If fn returns 0, continue on to the next signal. Otherwise, return the same * value that fn returned. * * Note that there is no guarantee that the file descriptors will be processed * in any particular order. */ static int evmap_io_foreach_fd(struct event_base *base, evmap_io_foreach_fd_cb fn, void *arg) { evutil_socket_t fd; struct event_io_map *iomap = &base->io; int r = 0; #ifdef EVMAP_USE_HT struct event_map_entry **mapent; HT_FOREACH(mapent, event_io_map, iomap) { struct evmap_io *ctx = &(*mapent)->ent.evmap_io; fd = (*mapent)->fd; #else for (fd = 0; fd < iomap->nentries; ++fd) { struct evmap_io *ctx = iomap->entries[fd]; if (!ctx) continue; #endif if ((r = fn(base, fd, ctx, arg))) break; } return r; } /* Callback type for evmap_signal_foreach_signal */ typedef int (*evmap_signal_foreach_signal_cb)( struct event_base *, int, struct evmap_signal *, void *); /* Multipurpose helper function: Iterate over every signal number in the * event_base for which we could have signal events. For each such signal, * call fn(base, signum, evmap_signal, arg), where fn is the user-provided * function, base is the event_base, signum is the signal number, evmap_signal * is an evmap_signal structure containing a list of events pending on the * signal, and arg is the user-supplied argument. * * If fn returns 0, continue on to the next signal. Otherwise, return the same * value that fn returned. */ static int evmap_signal_foreach_signal(struct event_base *base, evmap_signal_foreach_signal_cb fn, void *arg) { struct event_signal_map *sigmap = &base->sigmap; int r = 0; int signum; for (signum = 0; signum < sigmap->nentries; ++signum) { struct evmap_signal *ctx = sigmap->entries[signum]; if (!ctx) continue; if ((r = fn(base, signum, ctx, arg))) break; } return r; } /* Helper for evmap_reinit_: tell the backend to add every fd for which we have * pending events, with the appropriate combination of EV_READ, EV_WRITE, and * EV_ET. */ static int evmap_io_reinit_iter_fn(struct event_base *base, evutil_socket_t fd, struct evmap_io *ctx, void *arg) { const struct eventop *evsel = base->evsel; void *extra; int *result = arg; short events = 0; struct event *ev; EVUTIL_ASSERT(ctx); extra = ((char*)ctx) + sizeof(struct evmap_io); if (ctx->nread) events |= EV_READ; if (ctx->nwrite) events |= EV_WRITE; if (ctx->nclose) events |= EV_CLOSED; if (evsel->fdinfo_len) memset(extra, 0, evsel->fdinfo_len); if (events && (ev = LIST_FIRST(&ctx->events)) && (ev->ev_events & EV_ET)) events |= EV_ET; if (evsel->add(base, fd, 0, events, extra) == -1) *result = -1; return 0; } /* Helper for evmap_reinit_: tell the backend to add every signal for which we * have pending events. */ static int evmap_signal_reinit_iter_fn(struct event_base *base, int signum, struct evmap_signal *ctx, void *arg) { const struct eventop *evsel = base->evsigsel; int *result = arg; if (!LIST_EMPTY(&ctx->events)) { if (evsel->add(base, signum, 0, EV_SIGNAL, NULL) == -1) *result = -1; } return 0; } int evmap_reinit_(struct event_base *base) { int result = 0; evmap_io_foreach_fd(base, evmap_io_reinit_iter_fn, &result); if (result < 0) return -1; evmap_signal_foreach_signal(base, evmap_signal_reinit_iter_fn, &result); if (result < 0) return -1; return 0; } /* Helper for evmap_delete_all_: delete every event in an event_dlist. */ static int delete_all_in_dlist(struct event_dlist *dlist) { struct event *ev; while ((ev = LIST_FIRST(dlist))) event_del(ev); return 0; } /* Helper for evmap_delete_all_: delete every event pending on an fd. */ static int evmap_io_delete_all_iter_fn(struct event_base *base, evutil_socket_t fd, struct evmap_io *io_info, void *arg) { return delete_all_in_dlist(&io_info->events); } /* Helper for evmap_delete_all_: delete every event pending on a signal. */ static int evmap_signal_delete_all_iter_fn(struct event_base *base, int signum, struct evmap_signal *sig_info, void *arg) { return delete_all_in_dlist(&sig_info->events); } void evmap_delete_all_(struct event_base *base) { evmap_signal_foreach_signal(base, evmap_signal_delete_all_iter_fn, NULL); evmap_io_foreach_fd(base, evmap_io_delete_all_iter_fn, NULL); } /** Per-fd structure for use with changelists. It keeps track, for each fd or * signal using the changelist, of where its entry in the changelist is. */ struct event_changelist_fdinfo { int idxplus1; /* this is the index +1, so that memset(0) will make it * a no-such-element */ }; void event_changelist_init_(struct event_changelist *changelist) { changelist->changes = NULL; changelist->changes_size = 0; changelist->n_changes = 0; } /** Helper: return the changelist_fdinfo corresponding to a given change. */ static inline struct event_changelist_fdinfo * event_change_get_fdinfo(struct event_base *base, const struct event_change *change) { char *ptr; if (change->read_change & EV_CHANGE_SIGNAL) { struct evmap_signal *ctx; GET_SIGNAL_SLOT(ctx, &base->sigmap, change->fd, evmap_signal); ptr = ((char*)ctx) + sizeof(struct evmap_signal); } else { struct evmap_io *ctx; GET_IO_SLOT(ctx, &base->io, change->fd, evmap_io); ptr = ((char*)ctx) + sizeof(struct evmap_io); } return (void*)ptr; } /** Callback helper for event_changelist_assert_ok */ static int event_changelist_assert_ok_foreach_iter_fn( struct event_base *base, evutil_socket_t fd, struct evmap_io *io, void *arg) { struct event_changelist *changelist = &base->changelist; struct event_changelist_fdinfo *f; f = (void*) ( ((char*)io) + sizeof(struct evmap_io) ); if (f->idxplus1) { struct event_change *c = &changelist->changes[f->idxplus1 - 1]; EVUTIL_ASSERT(c->fd == fd); } return 0; } /** Make sure that the changelist is consistent with the evmap structures. */ static void event_changelist_assert_ok(struct event_base *base) { int i; struct event_changelist *changelist = &base->changelist; EVUTIL_ASSERT(changelist->changes_size >= changelist->n_changes); for (i = 0; i < changelist->n_changes; ++i) { struct event_change *c = &changelist->changes[i]; struct event_changelist_fdinfo *f; EVUTIL_ASSERT(c->fd >= 0); f = event_change_get_fdinfo(base, c); EVUTIL_ASSERT(f); EVUTIL_ASSERT(f->idxplus1 == i + 1); } evmap_io_foreach_fd(base, event_changelist_assert_ok_foreach_iter_fn, NULL); } #ifdef DEBUG_CHANGELIST #define event_changelist_check(base) event_changelist_assert_ok((base)) #else #define event_changelist_check(base) ((void)0) #endif void event_changelist_remove_all_(struct event_changelist *changelist, struct event_base *base) { int i; event_changelist_check(base); for (i = 0; i < changelist->n_changes; ++i) { struct event_change *ch = &changelist->changes[i]; struct event_changelist_fdinfo *fdinfo = event_change_get_fdinfo(base, ch); EVUTIL_ASSERT(fdinfo->idxplus1 == i + 1); fdinfo->idxplus1 = 0; } changelist->n_changes = 0; event_changelist_check(base); } void event_changelist_freemem_(struct event_changelist *changelist) { if (changelist->changes) mm_free(changelist->changes); event_changelist_init_(changelist); /* zero it all out. */ } /** Increase the size of 'changelist' to hold more changes. */ static int event_changelist_grow(struct event_changelist *changelist) { int new_size; struct event_change *new_changes; if (changelist->changes_size < 64) new_size = 64; else new_size = changelist->changes_size * 2; new_changes = mm_realloc(changelist->changes, new_size * sizeof(struct event_change)); if (EVUTIL_UNLIKELY(new_changes == NULL)) return (-1); changelist->changes = new_changes; changelist->changes_size = new_size; return (0); } /** Return a pointer to the changelist entry for the file descriptor or signal * 'fd', whose fdinfo is 'fdinfo'. If none exists, construct it, setting its * old_events field to old_events. */ static struct event_change * event_changelist_get_or_construct(struct event_changelist *changelist, evutil_socket_t fd, short old_events, struct event_changelist_fdinfo *fdinfo) { struct event_change *change; if (fdinfo->idxplus1 == 0) { int idx; EVUTIL_ASSERT(changelist->n_changes <= changelist->changes_size); if (changelist->n_changes == changelist->changes_size) { if (event_changelist_grow(changelist) < 0) return NULL; } idx = changelist->n_changes++; change = &changelist->changes[idx]; fdinfo->idxplus1 = idx + 1; memset(change, 0, sizeof(struct event_change)); change->fd = fd; change->old_events = old_events; } else { change = &changelist->changes[fdinfo->idxplus1 - 1]; EVUTIL_ASSERT(change->fd == fd); } return change; } int event_changelist_add_(struct event_base *base, evutil_socket_t fd, short old, short events, void *p) { struct event_changelist *changelist = &base->changelist; struct event_changelist_fdinfo *fdinfo = p; struct event_change *change; ev_uint8_t evchange = EV_CHANGE_ADD | (events & (EV_ET|EV_PERSIST|EV_SIGNAL)); event_changelist_check(base); change = event_changelist_get_or_construct(changelist, fd, old, fdinfo); if (!change) return -1; /* An add replaces any previous delete, but doesn't result in a no-op, * since the delete might fail (because the fd had been closed since * the last add, for instance. */ if (events & (EV_READ|EV_SIGNAL)) change->read_change = evchange; if (events & EV_WRITE) change->write_change = evchange; if (events & EV_CLOSED) change->close_change = evchange; event_changelist_check(base); return (0); } int event_changelist_del_(struct event_base *base, evutil_socket_t fd, short old, short events, void *p) { struct event_changelist *changelist = &base->changelist; struct event_changelist_fdinfo *fdinfo = p; struct event_change *change; ev_uint8_t del = EV_CHANGE_DEL | (events & EV_ET); event_changelist_check(base); change = event_changelist_get_or_construct(changelist, fd, old, fdinfo); event_changelist_check(base); if (!change) return -1; /* A delete on an event set that doesn't contain the event to be deleted produces a no-op. This effectively emoves any previous uncommitted add, rather than replacing it: on those platforms where "add, delete, dispatch" is not the same as "no-op, dispatch", we want the no-op behavior. If we have a no-op item, we could remove it it from the list entirely, but really there's not much point: skipping the no-op change when we do the dispatch later is far cheaper than rejuggling the array now. As this stands, it also lets through deletions of events that are not currently set. */ if (events & (EV_READ|EV_SIGNAL)) { if (!(change->old_events & (EV_READ | EV_SIGNAL))) change->read_change = 0; else change->read_change = del; } if (events & EV_WRITE) { if (!(change->old_events & EV_WRITE)) change->write_change = 0; else change->write_change = del; } if (events & EV_CLOSED) { if (!(change->old_events & EV_CLOSED)) change->close_change = 0; else change->close_change = del; } event_changelist_check(base); return (0); } /* Helper for evmap_check_integrity_: verify that all of the events pending on * given fd are set up correctly, and that the nread and nwrite counts on that * fd are correct. */ static int evmap_io_check_integrity_fn(struct event_base *base, evutil_socket_t fd, struct evmap_io *io_info, void *arg) { struct event *ev; int n_read = 0, n_write = 0, n_close = 0; /* First, make sure the list itself isn't corrupt. Otherwise, * running LIST_FOREACH could be an exciting adventure. */ EVUTIL_ASSERT_LIST_OK(&io_info->events, event, ev_io_next); LIST_FOREACH(ev, &io_info->events, ev_io_next) { EVUTIL_ASSERT(ev->ev_flags & EVLIST_INSERTED); EVUTIL_ASSERT(ev->ev_fd == fd); EVUTIL_ASSERT(!(ev->ev_events & EV_SIGNAL)); EVUTIL_ASSERT((ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))); if (ev->ev_events & EV_READ) ++n_read; if (ev->ev_events & EV_WRITE) ++n_write; if (ev->ev_events & EV_CLOSED) ++n_close; } EVUTIL_ASSERT(n_read == io_info->nread); EVUTIL_ASSERT(n_write == io_info->nwrite); EVUTIL_ASSERT(n_close == io_info->nclose); return 0; } /* Helper for evmap_check_integrity_: verify that all of the events pending * on given signal are set up correctly. */ static int evmap_signal_check_integrity_fn(struct event_base *base, int signum, struct evmap_signal *sig_info, void *arg) { struct event *ev; /* First, make sure the list itself isn't corrupt. */ EVUTIL_ASSERT_LIST_OK(&sig_info->events, event, ev_signal_next); LIST_FOREACH(ev, &sig_info->events, ev_io_next) { EVUTIL_ASSERT(ev->ev_flags & EVLIST_INSERTED); EVUTIL_ASSERT(ev->ev_fd == signum); EVUTIL_ASSERT((ev->ev_events & EV_SIGNAL)); EVUTIL_ASSERT(!(ev->ev_events & (EV_READ|EV_WRITE|EV_CLOSED))); } return 0; } void evmap_check_integrity_(struct event_base *base) { evmap_io_foreach_fd(base, evmap_io_check_integrity_fn, NULL); evmap_signal_foreach_signal(base, evmap_signal_check_integrity_fn, NULL); if (base->evsel->add == event_changelist_add_) event_changelist_assert_ok(base); } /* Helper type for evmap_foreach_event_: Bundles a function to call on every * event, and the user-provided void* to use as its third argument. */ struct evmap_foreach_event_helper { event_base_foreach_event_cb fn; void *arg; }; /* Helper for evmap_foreach_event_: calls a provided function on every event * pending on a given fd. */ static int evmap_io_foreach_event_fn(struct event_base *base, evutil_socket_t fd, struct evmap_io *io_info, void *arg) { struct evmap_foreach_event_helper *h = arg; struct event *ev; int r; LIST_FOREACH(ev, &io_info->events, ev_io_next) { if ((r = h->fn(base, ev, h->arg))) return r; } return 0; } /* Helper for evmap_foreach_event_: calls a provided function on every event * pending on a given signal. */ static int evmap_signal_foreach_event_fn(struct event_base *base, int signum, struct evmap_signal *sig_info, void *arg) { struct event *ev; struct evmap_foreach_event_helper *h = arg; int r; LIST_FOREACH(ev, &sig_info->events, ev_signal_next) { if ((r = h->fn(base, ev, h->arg))) return r; } return 0; } int evmap_foreach_event_(struct event_base *base, event_base_foreach_event_cb fn, void *arg) { struct evmap_foreach_event_helper h; int r; h.fn = fn; h.arg = arg; if ((r = evmap_io_foreach_fd(base, evmap_io_foreach_event_fn, &h))) return r; return evmap_signal_foreach_signal(base, evmap_signal_foreach_event_fn, &h); }