/* * This file is part of libFirm. * Copyright (C) 2012 University of Karlsruhe. */ /** * @file * @brief Heuristic PBQP solver for SSA-based register allocation. * @date 18.09.2009 * @author Thomas Bersch */ #include #include "adt/array.h" #include "bucket.h" #include "heuristical_co.h" #include "optimal.h" #if KAPS_DUMP #include "html_dumper.h" #endif #include "kaps.h" #include "matrix.h" #include "pbqp_edge.h" #include "pbqp_edge_t.h" #include "pbqp_node.h" #include "pbqp_node_t.h" #include "vector.h" #include "pdeq.h" #include "timing.h" static void merge_into_RN_node(pbqp_t *pbqp, deq_t *rpeo) { pbqp_node_t *node; /* We want to reduce the first node in reverse perfect elimination order. */ do { /* get first element from reverse perfect elimination order */ node = deq_pop_pointer_left(pbqp_node_t, rpeo); /* insert node at the end of rpeo so the rpeo already exits after pbqp * solving */ deq_push_pointer_right(rpeo, node); } while (node_is_reduced(node)); assert(pbqp_node_get_degree(node) > 2); /* Check whether we can merge a neighbor into the current node. */ apply_RM(pbqp, node); } static void apply_RN_co(pbqp_t *pbqp) { pbqp_node_t *node = merged_node; merged_node = NULL; if (node_is_reduced(node)) return; #if KAPS_DUMP if (pbqp->dump_file) { char txt[100]; sprintf(txt, "RN-Reduction of Node n%u", node->index); pbqp_dump_section(pbqp->dump_file, 2, txt); pbqp_dump_graph(pbqp); } #endif unsigned min_index = get_local_minimal_alternative(pbqp, node); #if KAPS_DUMP if (pbqp->dump_file) { fprintf(pbqp->dump_file, "node n%u is set to %u

\n", node->index, min_index); } #endif #if KAPS_STATISTIC FILE *fh = fopen("solutions.pb", "a"); fprintf(fh, "[%u]", min_index); fclose(fh); pbqp->num_rn++; #endif /* Now that we found the local minimum set all other costs to infinity. */ select_alternative(node, min_index); } static void apply_heuristic_reductions_co(pbqp_t *pbqp, deq_t *rpeo) { #if KAPS_TIMING /* create timers */ ir_timer_t *t_edge = ir_timer_new(); ir_timer_t *t_r1 = ir_timer_new(); ir_timer_t *t_r2 = ir_timer_new(); ir_timer_t *t_rn = ir_timer_new(); #endif for (;;) { if (edge_bucket_get_length(edge_bucket) > 0) { #if KAPS_TIMING ir_timer_start(t_edge); #endif apply_edge(pbqp); #if KAPS_TIMING ir_timer_stop(t_edge); #endif } else if (node_bucket_get_length(node_buckets[1]) > 0) { #if KAPS_TIMING ir_timer_start(t_r1); #endif apply_RI(pbqp); #if KAPS_TIMING ir_timer_stop(t_r1); #endif } else if (node_bucket_get_length(node_buckets[2]) > 0) { #if KAPS_TIMING ir_timer_start(t_r2); #endif apply_RII(pbqp); #if KAPS_TIMING ir_timer_stop(t_r2); #endif } else if (merged_node != NULL) { #if KAPS_TIMING ir_timer_start(t_rn); #endif apply_RN_co(pbqp); #if KAPS_TIMING ir_timer_stop(t_rn); #endif } else if (node_bucket_get_length(node_buckets[3]) > 0) { #if KAPS_TIMING ir_timer_start(t_rn); #endif merge_into_RN_node(pbqp, rpeo); #if KAPS_TIMING ir_timer_stop(t_rn); #endif } else { #if KAPS_TIMING printf("PBQP RE reductions: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_edge) / 1000.0); printf("PBQP R1 reductions: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_r1) / 1000.0); printf("PBQP R2 reductions: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_r2) / 1000.0); printf("PBQP RN reductions: %10.3lf msec\n", (double)ir_timer_elapsed_usec(t_rn) / 1000.0); #endif return; } } } void solve_pbqp_heuristical_co(pbqp_t *pbqp, deq_t *rpeo) { #ifndef NDEBUG assert(pbqp); assert(rpeo); assert(pbqp->solution == INF_COSTS && "PBQP already solved"); pbqp->solution = 0; #endif /* Reduce nodes degree ... */ initial_simplify_edges(pbqp); /* ... and put node into bucket representing their degree. */ fill_node_buckets(pbqp); #if KAPS_STATISTIC FILE *fh = fopen("solutions.pb", "a"); fprintf(fh, "Solution"); fclose(fh); #endif apply_heuristic_reductions_co(pbqp, rpeo); pbqp->solution = determine_solution(pbqp); #if KAPS_STATISTIC fh = fopen("solutions.pb", "a"); #if KAPS_USE_UNSIGNED fprintf(fh, ": %u RE:%u R0:%u R1:%u R2:%u RM:%u RN/BF:%u\n", pbqp->solution, pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2, pbqp->num_rm, pbqp->num_rn); #else fprintf(fh, ": %lld RE:%u R0:%u R1:%u R2:%u RM:%u RN/BF:%u\n", pbqp->solution, pbqp->num_edges, pbqp->num_r0, pbqp->num_r1, pbqp->num_r2, pbqp->num_rm, pbqp->num_rn); #endif fclose(fh); #endif /* Solve reduced nodes. */ back_propagate(pbqp); free_buckets(); }