
D3XX for Linux 1.0.5

By Future Technology Devices International

Mar 8 2023

Introduction
D3XX for Linux/OS-X is an userspace library implemented based on libusb,
which provides D3XX compatible APIs on Linux. There are some differences in
the implementation APIs for Windows and Linux, which are listed below the
API matrix.

Windows Linux/OS-X
Asynchronous
API

Required for high throughput
since it’s not a buffered
design, to keep multiple URB
requests in the queue

Not required. Library’s
internal threads will keep
multiple URB requests in the
queue.

Data loss Host will hang when
FT_ReadPipe read 8K but
FIFO master only returns 1K
and no more data’s coming,
abort procedure is required
to recovery from hang but 1K
data will be lost

Set dwURBBufferSize of
FT_SetTransferParams to
1024 for this situation to avoid
both data loss and hang issue

Notification Use FT_ReadPipe to read
exactly the same amount of
data reported by notification

Use FT_ReadPipeEx with
timeout to get any data
length, set timeout to 0 to
read from library buffer only

libftd3xx uses an unmodified version of libusb which is distributed under the
terms of the LGPL.

History
• 1.0.5

– Fix for the issue with data read in the Notification call back function.
• 1.0.4

– Support FT_SetNotificationCallback() API.

1

https://github.com/libusb/libusb
http://www.ftdichip.com/Support/Documents/ProgramGuides/AN_379%20D3xx%20Programmers%20Guide.pdf
https://github.com/libusb/libusb/blob/master/COPYING


– Support FT_ClearNotificationCallback() API.
• 1.0.3

– Fix the small packet issue with FT_ReadPipeEx API
• 1.0.2

– Fix for the issue with data read in 1.0.1. There were some addional
data coming in.

• 1.0.1
– Fix issue in Async transfer.

• 1.0.0
– New Driver
– Removed read and write buffering at the library level.
– New API’s supported.

∗ FT_GetOverlappedResult()
∗ FT_InitializeOverlapped()
∗ FT_ReleaseOverlapped()
∗ FT_SetStreamPipe()
∗ FT_ClearStreamPipe()
∗ FT_AbortPipe()
∗ FT_ReadPipeAsync()
∗ FT_WritePipeAsync()

– Bug fix: FT_SetChipConfiguration() API NULL pointer issue.
– Support for ARMv6 (hard float) is enabled.

• 0.6.5
– Bug fix: Fix the read issue for macOs.

• 0.6.4
– Bug fix: FT_GetDeviceDescriptor() API failure.
– Support FT_GetInterfaceDescriptor() API.
– Support FT_GetPipeInformation() API.

• 0.6.3.1
– Fix Serial number field lengh mismatch

• 0.6.3
– Add in location ID (locID) for D3XX devices. Based on the bus

number and the device address.
• 0.5.28

– Fix for i686 wrap_memcpy issue.
• 0.5.25

– Support for ARM Linux Build.
• 0.5.21

– Bug fix: Ignore failure of update U1 for Revision A device
• 0.5.20

– Limit maximum URB size to 16KB if Linux kernel version <= 3.3
– Move workaround for FT600/FT601 Revision A chip from sample

code into library
– Start IN streaming after FT_ReadPipe()/FT_ReadPipeEx() has been

called
• 0.5.17

2



– Compiled with Ubuntu 14.04 (GCC 4.8.4) to support SUSE Linux
Enterprise Server 11 SP4

– For static link build, please use Ubuntu 14.04
• 0.5.6

– Cross compiled with Android NDK R15, targeted to Android 6.0 API
level 23

– Static link to LLVM libc++ runtime
• 0.5.3

– Compile with GCC 4.9.2, GLIBC 2.19
– Bug fix: Fix potential session not auto repeated issue
– API: FT_GetDeviceInfoList() will not longer open device

if pftHandle is not NULL, which follows Windows Library’s
implementation

– API: Filling correct value in pulLengthTransferred of FT_ControlTransfer()
• 0.5.0

– Add Rev B chip support
• 0.4.11

– Bug fix: FT_ReadGPIO() returns wrong value for Rev A chip
– Bug fix: Change return value to FT_OK when FT_ReadPipe() and

FT_ReadPipeEx()’s return value is FT_TIMEOUT and at least 1
byte had been read

• 0.4.10
– API: implemented FT_EnableGPIO() FT_WriteGPIO() FT_ReadGPIO()

for Revision A device
– API: implemented FT_GetDescriptor() FT_GetStringDescriptor()

FT_GetDeviceDescriptor() FT_GetConfigurationDescriptor()
FT_GetInterfaceDescriptor() FT_GetPipeInformation()
FT_ListDevices()

• 0.4.9
– Support Revision B device: request device send ZLP before

FT_ReadPipe()/FT_ReadPipeEx() timeouts
• 0.4.8

– Bug fix: multiple channel read/write not working correctly
– Remove FT_AddVIDPID() API, stop detecting D3XX devices by

using VID/PID anymore
• 0.4.7

– Allow NULL parameters for FT_GetDeviceInfoDetail()
• 0.4.6

– Stop changing chip configuration in FT_Create(), please remove
ENABLENOTIFICATIONMESSAGE_INCHALL and set DISABLE-
CANCELSESSIONUNDERRUN in your application

– Bug fix: read buffer pointer is not increased which cause data not
been copied.

– New demo application: file_transfer.cpp which use FT245 loopback
to duplicate file.

• 0.4.5

3



– Add workaround for FT600/FT601 Rev.A device to prevent sending
control requests when streaming is on, which may cause system hang
or failed to create device.

• 0.4.4
– Demo application: add new argument to change FIFO mode.
– API: implemented FT_EnableGPIO() FT_WriteGPIO() FT_ReadGPIO()

FT_SetGPIOPull() for Revision B device.
• 0.4.3

– First beta release

Installation
sudo rm /usr/lib/libftd3xx.so
sudo cp libftd3xx.so /usr/lib/
sudo cp libftd3xx.so. /usr/lib/
sudo cp 51-ftd3xx.rules /etc/udev/rules.d/
sudo udevadm control --reload-rules

Demo application
1. Extract the release package, compile the demo application.

make

2. Streamer application usage:
• Arguments: ./stremer <read channel count> <write channel

count> [mode]
– Mode: 0 = FT245 mode (default), 1 = FT600 mode

• Examples:
– FT245 loopback FPGA: ./streamer 1 1
– FT600 loopback FPGA: ./streamer 4 4 1
– FT245 streaming FPGA (read only): ./streamer 1 0
– FT245 streaming FPGA (write only): ./streamer 0 1
– FT245 streaming FPGA (read and write): ./streamer 1 1
– FT600 streaming FPGA (3 channel read 1 channel write):

./streamer 3 1 1
• Please run with root permission if streamer app failed to detect any

device.
• Alternatively you can run the streamer application without installing

library: sh sudo LD_LIBRARY_PATH=. ./streamer 1 0
3. File transfer loopback application usage:

• Arguments: ./file_transfer <src file> <dest files> <FIFO
mode/channel count> [loop]

– FIFO mode/channel count: 0 = FT245 fifo mode, 1 - 4 FT600
channel count

– loop: 0 = oneshot (default), 1 = loop forever

4



Demo application for Android
1. Install CMake and NDK from Android SDK Manager
2. Extract the release package, open android-build with your pre-

ferred text editor, the content of the file looks like below: #!/bin/bash
ASDK=/usr/local/opt/android-sdk ANDROID_API_LEVEL=android-23
TMP_DIR=/tmp/d3xx-demo ARCHS=(arm64-v8a armeabi-v7a armeabi
x86_64 x86) # Set to OFF if dynamic link is preferred
STATIC_LINK_TO_D3XX=ON

3. Change ASDK to point to the path of your Android SDK
4. Compile the demo application

./android-build

4. Run the compiled application on your Android target

adb push streamer /data/local/tmp
adb push libftd3xx.so /data/local/tmp
adb shell
su
cd /data/local/tmp
LD_LIBRARY_PATH=. ./streamer 1 1

Static link
1. GCC 4.9 or later must be used
2. Link with GCC 4.9.2 C++ static library is required:

LIBS = -L . -lftd3xx-static -llibstdc++-static

D3XX API matrix

API Linux Win Remark for Linux
FT_CreateDeviceInfoListI1 I
FT_GetDeviceInfoList I I
FT_GetDeviceInfoDetail I I
FT_ListDevices I I
FT_Create I I
FT_Close I I
FT_WritePipe I I pOverlapped parameter is not

supported, internally will call
FT_WritePipeEx with timeout option
from FT_SetPipeTimeout, default
timeout is 1second

5



API Linux Win Remark for Linux
FT_ReadPipe I I pOverlapped parameter is not

supported, internally will call
FT_ReadPipeEx with timeout option
from FT_SetPipeTimeout, default
timeout is 1second

FT_GetOverlappedResult I I
FT_InitializeOverlappedI I
FT_ReleaseOverlapped I I
FT_SetStreamPipe I I
FT_ClearStreamPipe I I
FT_AbortPipe I I
FT_FlushPipe I I
FT_GetDeviceDescriptor I I
FT_GetConfigurationDescriptorI I Active configuration only
FT_GetInterfaceDescriptorI I Active configuration only
FT_GetStringDescriptor I I
FT_GetPipeInformation I I
FT_GetDescriptor I I
FT_ControlTransfer I I
FT_GetVIDPID I I
FT_SetGPIO X I Obsoleted
FT_GetGPIO X I Obsoleted
FT_EnableGPIO I I
FT_WriteGPIO I I
FT_ReadGPIO I I
FT_SetGPIOPull I X For Rev. B device only
FT_SetNotificationCallbackX I
FT_ClearNotificationCallbackX I
FT_GetChipConfigurationI I
FT_SetChipConfigurationI I
FT_IsDevicePath X I Linux doesn’t support GUID path
FT_GetDriverVersion I I
FT_GetLibraryVersion I I
FT_GetFirmwareVersion I I
FT_ResetDevicePort I I
FT_CycleDevicePort X I
FT_SetPipeTimeout I I Added to keep compatible with D3XX

for Windows 1.2.0.5 RC6. Set 0 to
read from /write to library buffer only

FT_SetTransferParams I X Must be called before FT_Create is
called

FT_ReadPipeEx I X equivalent to FT_SetPipeTimeout +
FT_ReadPipe. Use FIFO index instead
of endpoint to address pipe

6



API Linux Win Remark for Linux
FT_WritePipeEx I X equivalent to FT_SetPipeTimeout +

FT_WritePipe. Use FIFO index
instead of endpoint to address pipe

FT_ReadPipeAsync I X Reads data from the pipe. An
enhanced version of FT_ReadPipeEx
for improved latencies between reads.
However to get the maximum benefit,
this API should be used
asynchronously with
FT_SetStreamPipe.

FT_WritePipeAsync I X Writes data to the pipe.
FT_WritePipeAsync used for
asynchronous transfers with
FT_SetStreamPipe. However the
maximum input buffer size supported
for this API is 1 Mega Byte to
guarantee the lower latencies.

New Linux only APIs
enum FT_GPIO_PULL {

GPIO_PULL_50K_PD,
GPIO_PULL_HIZ,
GPIO_PULL_50K_PU,
GPIO_PULL_DEFAULT = GPIO_PULL_50K_PD

};

enum FT_PIPE_DIRECTION {
FT_PIPE_DIR_IN,
FT_PIPE_DIR_OUT,
FT_PIPE_DIR_COUNT,

};

struct FT_PIPE_TRANSFER_CONF {
/* set to true PIPE is not used, default set to FALSE */
BOOL fPipeNotUsed;

/* Enable non thread safe transfer to increase throughput, set this flag
* if guarantee only single thread access the pipe at a time, default
* set to FALSE */

BOOL fNonThreadSafeTransfer;

1Implemented #[ˆX]: Non-exists

7



/* Concurrent URB request number, 8 by default, set value < 2 to use
* default value */

BYTE bURBCount;

/* 256 by default, set value < 2 to use default value */
WORD wURBBufferCount;

/* 32K by default, set value < 512 to use default value */
DWORD dwURBBufferSize;

/* 1G by default, used by FT600 and FT601 only, set 0 to use
* default value */

DWORD dwStreamingSize;
};

typedef struct _FT_TRANSFER_CONF {
/* structure size: sizeof(FT_TRANSFER_CONF) */
WORD wStructSize;

/* Please refer to struture FT_PIPE_TRANSFER_CONF */
struct FT_PIPE_TRANSFER_CONF pipe[FT_PIPE_DIR_COUNT];

/* Stop reading next URB buffer if current buffer is not fully filled,
* default set to FALSE */

BOOL fStopReadingOnURBUnderrun;

/* Reserved, set to 0 */
BOOL fReserved1;

/* Do not flush device side residue buffer after reopen the
* device, default set to FALSE */

BOOL fKeepDeviceSideBufferAfterReopen;
} FT_TRANSFER_CONF;

/* Set transfer parameters for each FIFO channel
* Must be called before FT_Create is called. Need to be called again
* after FT_Close(), otherwise default parameters will be used.
*
* Default value will be used for each FIFO channel if this function
* is not been called. Please refer to structure defines for default
* value.
*
* pConf: Please refer to structure FT_TRANSFER_CONF
* dwFifoID: FIFO interface ID. Valid values are 0-3 which represents
* FIFO channel 1-4 for FT600 and FT601 */

FTD3XX_API FT_STATUS WINAPI FT_SetTransferParams(

8



FT_TRANSFER_CONF *pConf,
DWORD dwFifoID);

/* ReadPipe with timeout
*
* dwFifoID: FIFO interface ID. Valid values are 0-3 which represents
* FIFO channel 1-4 for FT600 and FT601
* dwTimeoutInMs: timeout in milliseconds, 0 means return immediately
* if no data */

FTD3XX_API FT_STATUS WINAPI FT_ReadPipeEx(
FT_HANDLE ftHandle,
UCHAR ucFifoID,
PUCHAR pucBuffer,
ULONG ulBufferLength,
PULONG pulBytesTransferred,
DWORD dwTimeoutInMs);

/* WritePipe with timeout
*
* dwFifoID: FIFO interface ID. Valid values are 0-3 which represents
* FIFO channel 1-4 for FT600 and FT601
* dwTimeoutInMs: timeout in milliseconds, 0 means return immediately
* if no data */

FTD3XX_API FT_STATUS WINAPI FT_WritePipeEx(
FT_HANDLE ftHandle,
UCHAR ucFifoID,
PUCHAR pucBuffer,
ULONG ulBufferLength,
PULONG pulBytesTransferred,
DWORD dwTimeoutInMs);

/* Enable GPIOs
* Each bit represents one GPIO setting, GPIO0-GPIO2 from LSB to MSB
*
* dwMask: set bit to 0 to skip the GPIO, 1 to enable the GPIO
* dwDirection: set bit to 0 for input, 1 for output */

FTD3XX_API FT_STATUS WINAPI FT_EnableGPIO(
FT_HANDLE ftHandle,
DWORD dwMask,
DWORD dwDirection
);

/* Set GPIO level
* Each bit represents one GPIO setting, GPIO0-GPIO2 from LSB to MSB
*
* dwMask: set bit to 0 to skip the GPIO, 1 to enable the GPIO

9



* dwDirection: set bit to 0 for low, 1 for high */
FTD3XX_API FT_STATUS WINAPI FT_WriteGPIO(

FT_HANDLE ftHandle,
DWORD dwMask,
DWORD dwLevel
);

/* Get level of all GPIOs
* Each bit represents one GPIO setting, GPIO0-GPIO2, RD_N, OE_N from
* LSB to MSB */

FTD3XX_API FT_STATUS WINAPI FT_ReadGPIO(
FT_HANDLE ftHandle,
DWORD *pdwData
);

/* Set GPIO internal pull resisters
* dwMask: Each bit represents one GPIO setting, GPIO0-GPIO2 from
* LSB to MSB
* dwPull: Each two bits represents one GPIO setting, GPIO0-GPIO2 from
* LSB to MSB
*
* dwMask: set bit to 0 to skip the GPIO, 1 to enable the GPIO
* dwPull: refer to enum FT_GPIO_PULL */

FTD3XX_API FT_STATUS WINAPI FT_SetGPIOPull(
FT_HANDLE ftHandle,
DWORD dwMask,
DWORD dwPull
);

Notes
1. Kernel 3.3 and older limitations

• Maximum URB size cannot be larger than 16384 bytes
• Kernel may not be able to allocate more than 60 of concurrent URB

requests, please refer to kernel source

The following code example shows how to cope with the limits,

static void old_kernel_workaround(void)
{

FT_TRANSFER_CONF conf;

memset(&conf, 0, sizeof(FT_TRANSFER_CONF));
conf.wStructSize = sizeof(FT_TRANSFER_CONF);
conf.pipe[FT_PIPE_DIR_IN].bURBCount = 7;
conf.pipe[FT_PIPE_DIR_OUT].bURBCount = 7;

10

http://elixir.free-electrons.com/linux/v3.3/source/drivers/usb/host/xhci-ring.c#L2462


conf.pipe[FT_PIPE_DIR_IN].dwURBBufferSize = 16384;
conf.pipe[FT_PIPE_DIR_OUT].dwURBBufferSize = 16384;
for (DWORD i = 0; i < 4; i++)

FT_SetTransferParams(&conf, i);
}

2. Please call FT_CreateDeviceInfoList again after FT_ResetDevicePort
is been called, because the device is disconnected after port reset.

FT_ResetDevicePort(handle);
FT_Close(handle);
FT_CreateDeviceInfoList(&count);

3. Rev.A chip failed to get 1K aligned data issue

When FIFO master’s last write is 1K aligned data, and master stop writing
after this, part of the 1K aligned data may stuck in the host URB buffer,
and application will not be able to receive it, until fifo master start to
write again.

If your application hits this special case, please set dwURBBufferSize
of FT_SetTransferParams to 1024 for USB 3.0 port, and 512 for USB
2.0 port. This will make sure host URB requests return at the aligned
boundary but leads to poor performance.

Throughput is around 165MiB/s for single channel read configuration when
set to 1K, 362MiB/s when set to 32K.

4. Endpoint/Pipe ID vs FIFO ID

Endpoint or Pipe ID is used for FT_ReadPipe() and FT_WritePipe().
FT600/601 has 4 channels, the endpoint number is 0x2-0x5 for OUT pipes,
and 0x82-0x85 for IN pipes.

FIFO ID is used for new APIs e.g. FT_SetTransferParams(),
FT_ReadPipeEx(), FT_WritePipeEx(), FT_ReadPipeAsync() and
FT_WritePipeAsync(), which is [0, 3] for FT600/FT601.

11


	Introduction
	History
	Installation
	Demo application
	Demo application for Android
	Static link
	D3XX API matrix
	New Linux only APIs
	Notes

