/* Portable, threadsafe, 64-bit Mersenne Twister random number generator. * * Contents: * 1. object * 2. Base esl_rand64_*() number generators * 3. Other sampling routines * 4. Internal functions implementing Mersenne Twister MT19937-64 * 5. Debugging and development tools * 6. Benchmark driver * 7. Unit tests * 8. Test driver * 9. Example * * See also: * esl_random : Easel's standard RNG, a 32-bit Mersenne Twister * * The ESL_RAND64 generator is derived from MT19937-64 (2004/9/29) by * Takuji Nishimura and Makoto Matsumoto. * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/C-LANG/mt19937-64.c * Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura. * All rights reserved. * * esl_rand64_Deal() is derived from code by Kevin Lawler (Brave * Software; brave.com). * Copyright (2016) Kevin Lawler. Released under ISC License. * * In addition to the automated unit tests, external tests also verified that: * 1. esl_rand64() stream matches mt19937-64.c stream * 2. esl_rand64() passes NIST sts-2.1.2 (2014) RNG statistical test suite */ #include "esl_config.h" #include #include #include #include // time(), clock() #ifdef HAVE_UNISTD_H #include // getpid() #endif #include "easel.h" #include "esl_random.h" #include "esl_rand64.h" static void mt64_seed_table(ESL_RAND64 *rng, uint64_t seed); static void mt64_fill_table(ESL_RAND64 *rng); static uint64_t choose_arbitrary_seed(void); /***************************************************************** * 1. The object. *****************************************************************/ /* Function: esl_rand64_Create() * Synopsis: Create a 64-bit Mersenne Twister RNG. * Incept: SRE, Tue 21 Aug 2018 * * Purpose: Create a new RNG, seeding it with . * * If is $>0$, the RNG is reproducibly initialized * with that seed. Two RNGs created with the same nonzero seed * will give exactly the same stream of pseudorandom numbers. * * If is 0, an arbitrary seed is chosen. Two RNGs * created with seed=0 will very probably (though not * assuredly) give different streams of pseudorandom * numbers. The seed that was used can be retrieved with * . The strategy used for choosing * the arbitrary seed is predictable (a hash of the current * time and the process id), so it is not cryptographically * secure. * * Returns: on success. * * Throws: on allocation failure. * * Notes: Initializing a new RNG takes negligible time. If you find * yourself obsessively worrying about it, don't. */ ESL_RAND64 * esl_rand64_Create(uint64_t seed) { ESL_RAND64 *rng = NULL; int status; ESL_ALLOC(rng, sizeof(ESL_RAND64)); rng->mti = 0; rng->seed = 0; esl_rand64_Init(rng, seed); return rng; ERROR: return NULL; } /* Function: esl_rand64_Init() * Synopsis: Reinitialize an RNG with a new seed. * Incept: SRE, Tue 21 Aug 2018 * * Purpose: Reinitialize with a new . * * Sometimes it's useful to reseed an RNG to generate a * reproducible series of random numbers at an arbitrary * point in a program that's already consumed an unknown * number of random numbers. Our unit test code has * frequent examples of this, where a given unit test * function wants to control its RNG stream, regardless of * what has executed before it. * * Returns on success. * * Throws: (no abnormal error conditions) */ int esl_rand64_Init(ESL_RAND64 *rng, uint64_t seed) { if (seed == 0ULL) seed = choose_arbitrary_seed(); mt64_seed_table(rng, seed); mt64_fill_table(rng); return eslOK; } /* Function: esl_rand64_GetSeed() * Synopsis: Return the value of the RNG's seed. * Incept: SRE, Tue 21 Aug 2018 * * Purpose: Returns the value of the seed that used. This is * useful when was created with an arbitrary seed, * but you want to know what it was, so you can reproduce * whatever happens. Our unit tests generally select * arbitrary seeds and report them in output, for example. */ uint64_t esl_rand64_GetSeed(ESL_RAND64 *rng) { return rng->seed; } /* Function: esl_rand64_Destroy() * Synopsis: Frees an . * Incept: SRE, Tue 21 Aug 2018 */ void esl_rand64_Destroy(ESL_RAND64 *rng) { free(rng); } /***************************************************************** * 2. Base esl_rand64_*() number generators *****************************************************************/ /* Function: esl_rand64() * Synopsis: Generate a random number on [0,2^{64}-1] * Incept: SRE, Tue 21 Aug 2018 [Hans Zimmer, Inception, We Built Our Own World] */ uint64_t esl_rand64(ESL_RAND64 *rng) { uint64_t x; if (rng->mti >= 312) mt64_fill_table(rng); x = rng->mt[rng->mti++]; x ^= (x >> 29) & 0x5555555555555555ULL; x ^= (x << 17) & 0x71D67FFFEDA60000ULL; x ^= (x << 37) & 0xFFF7EEE000000000ULL; x ^= (x >> 43); return x; } /* Function: esl_rand64_int64() * Synopsis: Generate a random signed int64 on [0,2^63-1] * Incept: SRE, Fri 24 Aug 2018 * * Note: Starting with a 64-bit uint64_t, discards the most * significant bit and returns the low-order 63 bits. This * makes assumptions about the binary representation of * unsigned/signed integers. It will work correctly for * two's-complement, one's complement, and sign/magnitude * integer systems. C99 allows any of the three systems * (C99 6.2.6.2) for an ; exact-width types such as * are required to use two's complement (C99 * 7.18.1.1). */ int64_t esl_rand64_int64(ESL_RAND64 *rng) { return ((int64_t) (esl_rand64(rng) >> 1)); } /* Function: esl_rand64_Roll() * Synopsis: Generate a random number 0..n-1. * Incept: SRE, Tue 21 Aug 2018 */ uint64_t esl_rand64_Roll(ESL_RAND64 *rng, uint64_t n) { uint64_t factor = UINT64_MAX / n; uint64_t x; do { x = esl_rand64(rng) / factor; } while (x >= n); return x; } /* Function: esl_rand64_double() * Synopsis: Generate a uniformly distributed double on half-open interval [0,1) * Incept: SRE, Tue 21 Aug 2018 * * Purpose: Generate a uniformly distributed double $x$ on the half-open * interval $0 \leq x < 1$. */ double esl_rand64_double(ESL_RAND64 *rng) { return (double) (esl_rand64(rng) >> 11) * (1.0/9007199254740992.0); // (0..2^53-1) / 2^53 } /* Function: esl_rand64_double_closed() * Synopsis: Generate a uniformly distributed double on closed interval [0,1] * Incept: SRE, Tue 21 Aug 2018 * * Purpose: Generate a uniformly distributed double $x$ on the closed * interval $0 \leq x \leq 1$. */ double esl_rand64_double_closed(ESL_RAND64 *rng) { return ((double) (esl_rand64(rng) >> 11)) * (1.0/9007199254740991.0); // (0..2^53-1) / (2^53-1) } /* Function: esl_rand64_double_open() * Synopsis: Generate a uniformly distributed double on open interval (0,1) * Incept: SRE, Tue 21 Aug 2018 * * Purpose: Generate a uniformly distributed double $x$ on the open * interval $0 < x < 1$. */ double esl_rand64_double_open(ESL_RAND64 *rng) { return ((double) (esl_rand64(rng) >> 12) + 0.5) * (1.0/4503599627370496.0); // (0.5..(2^52-1).5 / 2^52 } /***************************************************************** * 3. Other sampling routines *****************************************************************/ /* vitter_a() * Vitter [1987] "Method A", needed inside the main "Method D" below. * * Sample the remaining integers from the remaining , where the * last one we sampled was ; store the sampled numbers in . * * The primes (e.g. m' not m) there indicate that this function is * implemented for finishing off a sample in progress, at the end of * Method D (below). Method D is sampling m from n. It decrements m * and n as it goes, and it's also incrementing a counter i as it * stores sampled integers in deal[i]. As it nears the end it may * switch to Method A by calling: * vitter_a(rng, m', n', j, deal+i) * to sample the remaining m' from the remaining n'. Because the * algorithm works by sampling skip distances between sampled integers * ( in the code below), we only need to know how many n' are left; * we don't need to know the maximum n. We get the samples by adding * the sampled skip distance to . * */ static int vitter_a(ESL_RAND64 *rng, int64_t m, int64_t n, int64_t j, int64_t *deal) { int64_t i = 0; // will count over remaining m samples int64_t S = 0; // sampled skip distance double top = (double) (n - m); double nreal = (double) n; double U, quot; while (m >= 2) { U = esl_rand64_double_open(rng); // (0,1) unit open interval. Lawler uses [0,1) but Vitter says (0,1). S = 0; quot = top/nreal; while (quot > U) // sample this S in O(S+1) time; so O(n) over all sampling { S++; top -= 1.; nreal -= 1.; quot = (quot * top)/nreal; } j += S+1; // skip S to next sampled integer j deal[i++] = j; nreal -= 1; m--; } S = floor(round(nreal) * esl_rand64_double(rng)); // last sample (0..n'-1) uniform, with n' >= 1 j += S+1; deal[i++] = j; return eslOK; } /* Function: esl_rand64_Deal() * Synopsis: Sequential random sample of integers from . * Incept: SRE, Wed 13 Mar 2019 (John Prine, No Ordinary Blue) * * Purpose: Obtain a random sample of integers without replacement * from possible ones, like dealing a hand of m=5 cards * from a deck of n=52 possible cards with cards numbered * <0..n-1>. Caller provides allocated space , * allocated for at least elements. Return the sample * in , in sorted order (smallest to largest). * * Uses the Vitter sequential random sampling algorithm * [[Vitter, 1987]](https://dl.acm.org/citation.cfm?id=23003), * which is $O(m)$ time and $O(1)$ additional memory. Selection * sampling and reservoir sampling algorithms are simpler, * but less efficient when the range $n$ is large because * they are $O(n)$ time. * * Args: m - number of integers to sample * n - range: each sample is 0..n-1 * deal - RESULT: allocated space for sampled integers * * Returns: on success, and the sample of integers * is in . * * Throws: (no abnormal error conditions) * * Xref: J.S. Vitter, "An Efficient Algorithm for Sequential * Random Sampling", ACM Trans Math Software 13:58-67 * (1987). * * Derived from code by Kevin Lawler (Brave Software; brave.com). * https://getkerf.wordpress.com/2016/03/30/the-best-algorithm-no-one-knows-about/ * Copyright (2016) Kevin Lawler. Released under ISC License. * Lawler's implementation closely follows Vitter (1987). * I've only made cosmetic changes to be more Easel-ish. */ int esl_rand64_Deal(ESL_RAND64 *rng, int64_t m, int64_t n, int64_t *deal) { int64_t i = 0; // index over samples going into int64_t j = -1; // index of last sample we took. int64_t S; // randomly sampled gap size. j' = j+S+1. int64_t qu1 = n - m + 1; int64_t negalphainv = -13; // 1/a, where a is free parameter controlling switch to method "A" int64_t threshold = -negalphainv*m; // controls switchover to "method A" double mreal = (double) m; double nreal = (double) n; double minv = 1.0 / (double) m; double mmin1inv = 1.0 / (double) (m-1); double Vprime = exp(minv * log(esl_rand64_double(rng))); double qu1real = nreal - mreal + 1.0; int64_t t, limit; double negSreal, U, X, y1, y2, top, bottom; ESL_DASSERT1(( m <= n )); while (m > 1 && n > threshold) { mmin1inv = 1.0 / (-1.0 + mreal); while (1) { while (1) { X = nreal * (-Vprime + 1.0); if ((S = floor(X)) < qu1) break; Vprime = exp(minv * log(esl_rand64_double_open(rng))); } U = esl_rand64_double_open(rng); negSreal = -S; y1 = exp(mmin1inv * log(U*nreal/qu1real)); Vprime = y1 * (-X/nreal + 1.0) * (qu1real / (negSreal + qu1real)); if (Vprime <= 1.) break; y2 = 1.; top = nreal - 1.; if (n-1 > S) { bottom = nreal - mreal; limit = n - S; } else { bottom = nreal + negSreal - 1.; limit = qu1; } for (t = n-1; t >= limit; t--) { y2 = (y2 * top) / bottom; top--; bottom--; } if (nreal / (nreal-X) >= y1 * exp(mmin1inv * log(y2))) { Vprime = exp(mmin1inv * log(esl_rand64_double_open(rng))); break; } Vprime = exp(minv * log(esl_rand64_double_open(rng))); } j += S+1; deal[i++] = j; n = n - S - 1; nreal = nreal + negSreal - 1.; m -= 1; mreal -= 1.0; minv = mmin1inv; qu1 = qu1 - S; qu1real = qu1real + negSreal; threshold += negalphainv; } if (m > 1) vitter_a(rng, m, n, j, deal+i); else { S = floor(n * Vprime); j += S+1; deal[i++] = j; } return eslOK; } /***************************************************************** * 4. Internal functions implementing MT19937-64 *****************************************************************/ /* mt64_seed_table() * Initialize the state of the RNG from a seed. */ static void mt64_seed_table(ESL_RAND64 *rng, uint64_t seed) { int z; rng->mt[0] = rng->seed = seed; for (z = 1; z < 312; z++) rng->mt[z] = 6364136223846793005ULL * (rng->mt[z-1] ^ (rng->mt[z-1] >> 62)) + z; } /* mt64_fill_table() * Refill the table with 312 new random numbers. * We do this when we've reseeded, or when we run out of numbers. */ static void mt64_fill_table(ESL_RAND64 *rng) { static uint64_t mag01[2] = { 0ULL, 0xB5026F5AA96619E9ULL }; uint64_t x; int z; for (z = 0; z < 156; z++) // 156 = NN-MM = 312-156 { x = (rng->mt[z] & 0xFFFFFFFF80000000ULL) | (rng->mt[z+1] & 0x7FFFFFFFULL); rng->mt[z] = rng->mt[z+156] ^ (x>>1) ^ mag01[(int)(x & 1ULL)]; } for (; z < 311; z++) // 311 = NN-1 { x = (rng->mt[z] & 0xFFFFFFFF80000000ULL) | (rng->mt[z+1] & 0x7FFFFFFFULL); rng->mt[z] = rng->mt[z-156] ^ (x>>1) ^ mag01[(int)(x & 1ULL)]; } x = (rng->mt[311] & 0xFFFFFFFF80000000ULL) | (rng->mt[0] & 0x7FFFFFFFULL); rng->mt[311] = rng->mt[155] ^ (x>>1) ^ mag01[(int)(x & 1ULL)]; rng->mti = 0; } /* choose_arbitrary_seed() * Return a `quasirandom` seed > 0. * Generated by mixing time(), clock(), and getpid(). * * The combined entropy of the three sources is substantial, though * not straightforward to calculate because each source is * non-uniformly distributed and we could obtain useful information * about them. One way to Fermi-ballpark it: suppose uniform * distributions over ~10^7 sec in a given year for time(), over 10^6 * microseconds for a second since invocation for clock(), and over * ~100,000 possible pids: that's log_2 1e18 = 60 bits. This argues * that it's non-stupid to generate the high and low order 32 bits * of the seed using different mixings of the same three sources. */ static uint64_t choose_arbitrary_seed(void) { uint32_t a = (uint32_t) time ((time_t *) NULL); // seconds since the epoch. uint32_t b = 87654321; // we'll use getpid() below, if we can uint32_t c = (uint32_t) clock(); // clock() gives time since process invocation, in msec at least, if not usec uint64_t seed; #ifdef HAVE_GETPID b = (uint32_t) getpid(); // preferable b choice, if we have POSIX getpid() #endif seed = (uint64_t) esl_rnd_mix3(a,b,c); // high bits seed = (seed << 32) + (uint64_t) esl_rnd_mix3(c,a,b); // low bits: same #'s mixed in a different order return (seed == 0 ? 42 : seed); // 42 is arbitrary, just to avoid seed==0. } /***************************************************************** * 5. Debugging and development tools *****************************************************************/ /* Function: esl_rand64_Dump() * Synopsis: Dump ESL_RAND64 internal state to a stream. * Incept: SRE, Wed 22 Aug 2018 */ int esl_rand64_Dump(FILE *fp, ESL_RAND64 *rng) { int i; fprintf(fp, "MT19937-64 RNG state:\n"); fprintf(fp, "mti = %d (0..311)\n", rng->mti); fprintf(fp, "seed = %" PRIu64 "\n", rng->seed); for (i = 0; i < 312; i++) { fprintf(fp, "%20" PRIu64 " ", rng->mt[i]); if (i % 10 == 9) fprintf(fp, "\n"); } fprintf(fp, "\n"); return eslOK; } /***************************************************************** * 6. Benchmark driver *****************************************************************/ #ifdef eslRAND64_BENCHMARK #include "easel.h" #include "esl_getopts.h" #include "esl_rand64.h" #include "esl_stopwatch.h" /* The 32-bit and 64-bit Mersenne Twisters have similar performance per call. * They can produce about 300M random numbers per second (wyvern: Intel Core i7 3.1Ghz) * * ./esl_rand64_benchmark -N 1000000000 * esl_rand64() esl_random() * iter cpu time per call iter cpu time per call * ---- -------- -------- ---- -------- -------- * 22 Aug 18, wyvern : 1e9 3.31s 3 nsec 1e9 3.34s 3 nsec */ static ESL_OPTIONS options[] = { /* name type default env range toggles reqs incomp help docgroup*/ { "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 }, { "-N", eslARG_INT, "1000000000", NULL, NULL, NULL, NULL, NULL, "number of trials", 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, }; static char usage[] = "[-options]"; static char banner[] = "benchmarking speed of esl_rand64 generator"; int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage); ESL_RAND64 *rng = esl_rand64_Create(42); ESL_STOPWATCH *w = esl_stopwatch_Create(); int N = esl_opt_GetInteger(go, "-N"); esl_stopwatch_Start(w); while (N--) esl_rand64(rng); esl_stopwatch_Stop(w); esl_stopwatch_Display(stdout, w, "# CPU Time: "); esl_stopwatch_Destroy(w); esl_rand64_Destroy(rng); esl_getopts_Destroy(go); return 0; } #endif // eslRAND64_BENCHMARK /***************************************************************** * 7. Unit tests *****************************************************************/ #ifdef eslRAND64_TESTDRIVE #include "esl_stats.h" #include "esl_vectorops.h" /* utest_rand64() uses the same binned-chi-squared-test, six ways */ enum esl_rand64_utest_e { eslRAND64_LOWBITS, // esl_rand64(), low-order bits eslRAND64_HIGHBITS, // esl_rand64(), high-order bits eslRAND64_ROLL, // esl_rand64_Roll() eslRAND64_DOUBLE, // esl_rand64_double() eslRAND64_DOUBLE_CLOSED, // esl_rand64_double_closed() eslRAND64_DOUBLE_OPEN, // esl_rand64_double_open() }; /* utest_rand64() * * Test for uniform distribution of random numbers into bins, * using a chi-squared test. This won't detect subtle problems, * but it should detect show-stopping ones. */ static void utest_rand64(ESL_RAND64 *rng, enum esl_rand64_utest_e whichtest) { char msg[] = "rand64 unit test failed"; int n = 2000000; int nbins = 1024; // must be a power of two, to get equal-size bins uint64_t divisor = (UINT64_MAX / nbins) + 1; // = 2^64 / nbins, but we can't hold 2^64 in a uint64 int *counts = NULL; // binned histogram uint64_t x; double xd; int b; double expect, diff, X2, X2p; int i; if (( counts = malloc(sizeof(int) * nbins) ) == NULL) esl_fatal(msg); esl_vec_ISet(counts, nbins, 0); if (whichtest == eslRAND64_LOWBITS || whichtest == eslRAND64_HIGHBITS) { for (i = 0; i < n; i++) { x = esl_rand64(rng); if (whichtest == eslRAND64_HIGHBITS) b = (int) (x / divisor); else b = (int) (x % nbins); counts[b]++; } } else if (whichtest == eslRAND64_ROLL) { for (i = 0; i < n; i++) { b = esl_rand64_Roll(rng, nbins); if (b < 0 || b >= nbins) esl_fatal(msg); counts[b]++; } } else // one of the three _double* functions { for (i = 0; i < n; i++) { if (whichtest == eslRAND64_DOUBLE) { xd = esl_rand64_double(rng); if (xd < 0.0 || xd >= 1.0) esl_fatal(msg); } else if (whichtest == eslRAND64_DOUBLE_CLOSED) { xd = esl_rand64_double_closed(rng); if (xd < 0.0 || xd > 1.0) esl_fatal(msg); } else if (whichtest == eslRAND64_DOUBLE_OPEN) { xd = esl_rand64_double_open(rng); if (xd <= 0.0 || xd >= 1.0) esl_fatal(msg); } b = (int) (xd * nbins); if (b < 0 || b >= nbins) esl_fatal(msg); // inconceivable, given the test above on , but. counts[b] ++; } } /* chi-squared test */ expect = (double) n / (double) nbins; X2 = 0.; for (i = 0; i < nbins; i++) { diff = (double) counts[i] - expect; X2 += diff * diff / expect; } if ( esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal(msg); if (X2p < 0.01) esl_fatal(msg); // P < 0.01 happens 1% of the time; hence our fixed RNG seed free(counts); } /* utest_Deal() * Tests the esl_rand64_Deal() sequential sampling algorithm. * * If deals are random, each possible integer is sampled uniformly. * Take deals of integers from possible . * Expected count of each integer = nsamp * (m/n), +/- s.d. \sqrt(u) * Test that min, max are within +/- 6 sd. * * Can fail stochastically, so default test driver uses a fixed RNG seed. */ static void utest_Deal(ESL_RAND64 *rng) { char msg[] = "esl_rand64 deal unit test failed"; int64_t m = 100; int64_t n = 1000; int64_t nsamp = 10000; int64_t *deal = malloc(sizeof(int64_t) * m); int64_t *ct = malloc(sizeof(int64_t) * n); double expected_mean = ((double) m / (double) n) * (double) nsamp; double expected_sd = sqrt(expected_mean); int64_t max_allowed = (int64_t) round( expected_mean + 6. * expected_sd); int64_t min_allowed = (int64_t) round( expected_mean - 6. * expected_sd); int64_t i; if (deal == NULL || ct == NULL) esl_fatal(msg); esl_vec_LSet(ct, n, 0); while (nsamp--) { esl_rand64_Deal(rng, m, n, deal); for (i = 0; i < m; i++) ct[deal[i]]++; } if (esl_vec_LMax(ct, n) > max_allowed) esl_fatal(msg); if (esl_vec_LMin(ct, n) < min_allowed) esl_fatal(msg); free(deal); free(ct); } #endif // eslRAND64_TESTDRIVE /***************************************************************** * 8. Test driver *****************************************************************/ #ifdef eslRAND64_TESTDRIVE #include "easel.h" #include "esl_getopts.h" #include "esl_rand64.h" /* Default seed is 42, not 0, because this test can fail normally just by stochastic chance */ static ESL_OPTIONS options[] = { /* name type default env range togs reqs incomp help docgrp */ { "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0}, { "--bitfile", eslARG_STRING, NULL, NULL, NULL, NULL, NULL, NULL, "save bit file for NIST tests", 0}, { "--seed", eslARG_INT, "42", NULL, NULL, NULL, NULL, NULL, "set random number seed to ", 0}, { 0,0,0,0,0,0,0,0,0,0}, }; static char usage[] = "[-options]"; static char banner[] = "test driver for rand64 module"; static int save_bitfile(char *bitfile, ESL_RAND64 *rng); int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage); ESL_RAND64 *rng = esl_rand64_Create(esl_opt_GetInteger(go, "--seed")); char *bitfile = esl_opt_GetString(go, "--bitfile"); if (bitfile) { // alternative mode: save NIST bitfile instead of running unit tests save_bitfile(bitfile, rng); } else { fprintf(stderr, "## %s\n", argv[0]); fprintf(stderr, "# rng seed = %" PRIu64 "\n", esl_rand64_GetSeed(rng)); utest_rand64(rng, eslRAND64_LOWBITS); utest_rand64(rng, eslRAND64_HIGHBITS); utest_rand64(rng, eslRAND64_ROLL); utest_rand64(rng, eslRAND64_DOUBLE); utest_rand64(rng, eslRAND64_DOUBLE_CLOSED); utest_rand64(rng, eslRAND64_DOUBLE_OPEN); utest_Deal(rng); fprintf(stderr, "# status = ok\n"); } esl_rand64_Destroy(rng); esl_getopts_Destroy(go); return 0; } /* save_bitfile() * * The --bitfile option saves an ASCII file of random 0's and 1's, * instead of running the unit tests. This "bitfile" is suitable for * input to the NIST RNG statistical test suite. [xref H5/140] */ static int save_bitfile(char *bitfile, ESL_RAND64 *rng) { FILE *fp = NULL; uint64_t u; int n = 400000; // 4e5 samples x 64 = 2.56e7 bits. Suffices for 20 bitstreams of 10^6 bits. int i,b; if (( fp = fopen(bitfile, "w")) == NULL) esl_fatal("failed to open bitfile %s for writing", bitfile); for (i = 0; i < n; i++) { u = esl_rand64(rng); for (b = 0; b < 64; b++) { if (u & 0x1) fprintf(fp, "1"); else fprintf(fp, "0"); u >>= 1; } fprintf(fp, "\n"); } fclose(fp); return eslOK; } #endif // eslRAND64_TESTDRIVE /***************************************************************** * 9. Example *****************************************************************/ #ifdef eslRAND64_EXAMPLE #include "easel.h" #include "esl_getopts.h" #include "esl_rand64.h" static ESL_OPTIONS options[] = { /* name type default env range togs reqs incomp help docgrp */ {"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0}, {"--seed", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "set random number seed to ", 0}, { 0,0,0,0,0,0,0,0,0,0}, }; static char usage[] = "[-options]"; static char banner[] = "example driver for rand64"; int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage); ESL_RAND64 *rng = esl_rand64_Create(esl_opt_GetInteger(go, "--seed")); int i; for (i = 0; i < 1000; i++) printf("%20" PRIu64 "\n", esl_rand64(rng)); esl_rand64_Destroy(rng); esl_getopts_Destroy(go); return 0; } #endif // eslRAND64_EXAMPLE