/* Portable, threadsafe Mersenne Twister random number generator * * 1. The ESL_RANDOMNESS object. * 2. The generators, esl_random(). * 3. Debugging/development tools. * 4. Other fundamental sampling (including Gaussian, gamma). * 5. Multinomial sampling from discrete probability n-vectors. * 6. Random data generators (unit testing, etc.) * 7. Benchmark driver * 8. Unit tests. * 9. Test driver. * 10. Example. * * NIST test suite for validating random number generators: * https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software * * It'd be nice if we had a debugging/unit testing mode in which * esl_random() deliberately generated extreme values, such as 0 for * example. Routines that use esl_random() can be sensitive to whether * the interval 0,1 is open or closed. We should be able to test for * problems with interval endpoints without taking enormous numbers of * samples. * * Competitive alternatives to MT exist, including PCG [http://www.pcg-random.org/]. */ #include "esl_config.h" #include #include #include #include #include #include #include #ifdef HAVE_UNISTD_H #include #endif #include "easel.h" #include "esl_random.h" static uint32_t choose_arbitrary_seed(void); static uint32_t knuth (ESL_RANDOMNESS *r); static uint32_t mersenne_twister (ESL_RANDOMNESS *r); static void mersenne_seed_table(ESL_RANDOMNESS *r, uint32_t seed); static void mersenne_fill_table(ESL_RANDOMNESS *r); /***************************************************************** *# 1. The object. *****************************************************************/ /* Function: esl_randomness_Create() * Synopsis: Create the default strong random number generator. * * Purpose: Create a random number generator using * a given random seed. * * The default random number generator uses the Mersenne * Twister MT19937 algorithm \citep{Matsumoto98}. It has a * period of $2^{19937}-1$, and equidistribution over * $2^{32}$ values. * * If is $>0$, the random number generator is * reproducibly initialized with that seed. Two RNGs * created with the same nonzero seed will give exactly the * same stream of pseudorandom numbers. This allows you to * make reproducible stochastic simulations, for example. * * If is 0, an arbitrary seed is chosen. * Internally, this comes from hashing together the current * , , and process id. Two RNGs created * with =0 probably (but not assuredly) give * different streams of pseudorandom numbers. The true seed * can be retrieved from the object using * . The strategy used for * choosing the arbitrary seed is predictable; it should * not be considered cryptographically secure. * * Args: seed $>= 0$. * * Returns: an initialized on success. * Caller free's with . * * Throws: on failure. * * Xref: SRE:STL8/p57. * SRE:J5/21: Mersenne Twister. */ ESL_RANDOMNESS * esl_randomness_Create(uint32_t seed) { ESL_RANDOMNESS *r = NULL; int status; ESL_ALLOC(r, sizeof(ESL_RANDOMNESS)); r->type = eslRND_MERSENNE; r->mti = 0; r->x = 0; r->seed = 0; esl_randomness_Init(r, seed); return r; ERROR: return NULL; } /* Function: esl_randomness_CreateFast() * Synopsis: Create the alternative fast generator. * * THIS FUNCTION IS DEPRECATED. USE esl_randomness_Create() INSTEAD. * * Purpose: Same as , except that a simple * linear congruential generator (LCG) will be used. * This is a $(a=69069, c=1)$ LCG, with a period of * $2^{32}$. * * This is a low quality RNG. It fails several standard * NIST statistical tests. Successive samples from an LCG * are correlated, and it has a relatively short period. IT * SHOULD NOT BE USED (period). It is present in Easel for * legacy reasons. It used to be substantially faster than * our high quality RNG, but now our default Mersenne * Twister is plenty fast. We have regression and unit * tests that use the LCG and depend on a fixed seed and a * particular pseudorandom number sequence; they would have * to be re-studied carefully to upgrade them to a * different RNG. * * Here's an example of how serial correlation arises in an * LCG, and how it can lead to serious (and difficult to * diagnose) failure in a Monte Carlo simulation. An LCG * calculates $x_{i+1} = ax_i + c$. Suppose $x_i$ is small: * in the range 0..6000, say, as a specific example. Now * $x_{i+1}$ cannot be larger than 4.1e8, for an LCG with * $a=69069$,$c=1$. So if you take a sample and test * whether it is $< 1e-6$ (say), the next sample will be in * a range of about 0..0.1, rather than being uniform on * 0..1. * * Args: seed $>= 0$. * * Returns: an initialized on success. * Caller free's with . * * Throws: on failure. * * Xref: SRE:J5/44: for accidental proof that period is indeed 2^32. */ ESL_RANDOMNESS * esl_randomness_CreateFast(uint32_t seed) { ESL_RANDOMNESS *r = NULL; int status; ESL_ALLOC(r, sizeof(ESL_RANDOMNESS)); r->type = eslRND_FAST; r->mti = 0; r->x = 0; r->seed = 0; esl_randomness_Init(r, seed); return r; ERROR: return NULL; } /* Function: esl_randomness_CreateTimeseeded() * Synopsis: Create an RNG with a quasirandom seed. * * THIS FUNCTION IS DEPRECATED. USE esl_randomness_Create(0). * * Purpose: Like , but it initializes the * the random number generator using a POSIX call * (number of seconds since the POSIX epoch). * * This function is deprecated. Use * instead. * * Returns: an initialized on success. * Caller free's with . * * Throws: on failure. * * Xref: SRE:STL8/p57. */ ESL_RANDOMNESS * esl_randomness_CreateTimeseeded(void) { return esl_randomness_Create(0); } /* Function: esl_randomness_Init() * Synopsis: Reinitialize a RNG. * * Purpose: Reset and reinitialize an existing * object with a new seed. * * Sometimes it's useful to reseed an RNG to guarantee a * particular reproducible series of pseudorandom numbers * at an arbitrary point in a program; HMMER does this, for * example, to guarantee the same results from the same * HMM/sequence comparison regardless of where in a search * the HMM or sequence occurs. * * Args: r - randomness object * seed - new seed to use; >=0. * * Returns: on success. * * Xref: SRE:STL8/p57. */ int esl_randomness_Init(ESL_RANDOMNESS *r, uint32_t seed) { if (seed == 0) seed = choose_arbitrary_seed(); if (r->type == eslRND_MERSENNE) { mersenne_seed_table(r, seed); mersenne_fill_table(r); } else { r->seed = seed; r->x = esl_rnd_mix3(seed, 87654321, 12345678); /* arbitrary dispersion of the seed */ if (r->x == 0) r->x = 42; /* make sure we don't have a zero */ } return eslOK; } /* Function: esl_randomness_GetSeed() * Synopsis: Returns the value of RNG's seed. * * Purpose: Return the value of the seed. */ uint32_t esl_randomness_GetSeed(const ESL_RANDOMNESS *r) { return r->seed; } /* Function: esl_randomness_Destroy() * Synopsis: Free an RNG. * * Purpose: Frees an object. */ void esl_randomness_Destroy(ESL_RANDOMNESS *r) { free(r); return; } /*----------- end of ESL_RANDOMNESS object functions --------------*/ /***************************************************************** *# 2. The generators and *****************************************************************/ /* Function: esl_random() * Synopsis: Generate a uniform random deviate on [0,1) * * Purpose: Returns a uniform deviate x, $0.0 \leq x < 1.0$, given * RNG . * * If you cast the return value to float, the [0,1) interval * guarantee is lost because values close to 1 will round to * 1.0. * * Returns: a uniformly distribute random deviate on interval * $0.0 \leq x < 1.0$. */ double esl_random(ESL_RANDOMNESS *r) { uint32_t x = (r->type == eslRND_MERSENNE) ? mersenne_twister(r) : knuth(r); return ((double) x / 4294967296.0); // 2^32: [0,1). Original MT code has * (1.0/ 4294967296.0), which I believe (and tested) to be identical. } /* Function: esl_random_uint32() * Synopsis: Generate a uniform random deviate on 0..2^32-1 * Incept: SRE, Wed Jan 13 10:59:26 2016 * * Purpose: Returns a uniform deviate x, a 32-bit unsigned * integer $0 \leq x < 2^{32}$, given RNG . */ uint32_t esl_random_uint32(ESL_RANDOMNESS *r) { return (r->type == eslRND_MERSENNE) ? mersenne_twister(r) : knuth(r); } static uint32_t knuth(ESL_RANDOMNESS *r) { r->x *= 69069; r->x += 1; return r->x; } /* mersenne_twister() and other mersenne_*() functions below: * A simple serial implementation of the original Mersenne Twister * algorithm [Matsumoto98]. * * There are more sophisticated and faster implementations of MT, using * vector instructions and/or directly generating IEEE754 doubles * bitwise rather than doing an expensive normalization. We can * improve the implementation later if necessary, but even the basic * MT offers ~10x speed improvement over Easel's previous RNG. * [SRE, 30 May 09, Stockholm] */ static uint32_t mersenne_twister(ESL_RANDOMNESS *r) { uint32_t x; if (r->mti >= 624) mersenne_fill_table(r); x = r->mt[r->mti++]; x ^= (x >> 11); x ^= (x << 7) & 0x9d2c5680; x ^= (x << 15) & 0xefc60000; x ^= (x >> 18); return x; } /* mersenne_seed_table() * Initialize the state of the RNG from a seed, using a Knuth LCG. * * TODO: In January 2002, Nishimura and Matsumoto replaced this with a * better initialization. (Why did I use their ~1999 initialization * when I adapted MT in June 2009?) They say that the problem with * this version is that the seed's most significant bit has little * effect on the MT state vector. Upgrading this will require effort * though: any change to the output of our RNG will break numerous * unit tests and regressions that use fixed RNG seeds to get * reproducible streams. */ static void mersenne_seed_table(ESL_RANDOMNESS *r, uint32_t seed) { int z; r->seed = seed; r->mt[0] = seed; for (z = 1; z < 624; z++) r->mt[z] = 69069 * r->mt[z-1]; return; } /* mersenne_fill_table() * Refill the table with 624 new random numbers. * We do this whenever we've reseeded, or when we * run out of numbers. */ static void mersenne_fill_table(ESL_RANDOMNESS *r) { uint32_t y; int z; static uint32_t mag01[2] = { 0x0, 0x9908b0df }; for (z = 0; z < 227; z++) /* 227 = N-M = 624-397 */ { y = (r->mt[z] & 0x80000000) | (r->mt[z+1] & 0x7fffffff); r->mt[z] = r->mt[z+397] ^ (y>>1) ^ mag01[(int)(y & 0x1)]; /* yes, the (int) cast is necessary; xref bug #e7; some compilers may try to cast y to signed int otherwise, to use it in an array index */ } for (; z < 623; z++) { y = (r->mt[z] & 0x80000000) | (r->mt[z+1] & 0x7fffffff); r->mt[z] = r->mt[z-227] ^ (y>>1) ^ mag01[(int)(y & 0x1)]; } y = (r->mt[623] & 0x80000000) | (r->mt[0] & 0x7fffffff); r->mt[623] = r->mt[396] ^ (y>>1) ^ mag01[(int)(y & 0x1)]; r->mti = 0; return; } /* choose_arbitrary_seed() * Return a 'quasirandom' seed > 0, concocted by hashing time(), * clock(), and getpid() together. * See RFC1750 for a discussion of securely seeding RNGs. */ static uint32_t choose_arbitrary_seed(void) { uint32_t a = (uint32_t) time ((time_t *) NULL); uint32_t b = 87654321; // we'll use getpid() below, if we can uint32_t c = (uint32_t) clock(); // clock() gives time since process invocation, in msec at least, if not usec uint32_t seed; #ifdef HAVE_GETPID b = (uint32_t) getpid(); // preferable b choice, if we have POSIX getpid() #endif seed = esl_rnd_mix3(a,b,c); // try to decorrelate closely spaced choices of pid/times return (seed == 0) ? 42 : seed; // 42 is arbitrary, just to avoid seed==0. } /* Function: esl_rnd_mix3() * Synopsis: Make a quasirandom number by mixing three inputs. * Incept: SRE, Tue 21 Aug 2018 * * Purpose: This is Bob Jenkin's . Given , * generate a number that's generated reasonably * uniformly on $[0,2^{32}-1]$ even for closely * spaced choices of $a,b,c$. */ uint32_t esl_rnd_mix3(uint32_t a, uint32_t b, uint32_t c) { a -= b; a -= c; a ^= (c>>13); b -= c; b -= a; b ^= (a<<8); c -= a; c -= b; c ^= (b>>13); a -= b; a -= c; a ^= (c>>12); b -= c; b -= a; b ^= (a<<16); c -= a; c -= b; c ^= (b>>5); a -= b; a -= c; a ^= (c>>3); b -= c; b -= a; b ^= (a<<10); c -= a; c -= b; c ^= (b>>15); return c; } /*----------- end of esl_random() --------------*/ /***************************************************************** *# 3. Debugging and development tools *****************************************************************/ /* Function: esl_randomness_Dump() * Synopsis: Dump ESL_RANDOMNESS object to stream, for debugging/examination. */ int esl_randomness_Dump(FILE *fp, ESL_RANDOMNESS *r) { if (r->type == eslRND_FAST) { fputs ("type = knuth\n", fp ); fprintf(fp, "state = %" PRIu32 "\n", r->x); fprintf(fp, "seed = %" PRIu32 "\n", r->seed); } else if (r->type == eslRND_MERSENNE) { int i,j; fputs ("type = mersenne twister\n", fp ); fprintf(fp, "mti = %d (0..623)\n", r->mti); fprintf(fp, "mt[mti] = %" PRIu32 "\n", r->mt[r->mti]); fprintf(fp, "%6d: ", 0); for (i = 0, j=0; i < 624; i++) { fprintf(fp, "%11" PRIu32 " ", r->mt[i]); if (++j == 20) { fprintf(fp, "\n%6d: ", i+1); j=0; } } fputs("\n", fp); } return eslOK; } /*----------- end, debugging/development tools ------------------*/ /***************************************************************** *# 4. Other fundamental sampling (including Gaussian, gamma) *****************************************************************/ /* Function: esl_rnd_UniformPositive() * Synopsis: Generate a uniform positive random deviate on interval (0,1). * * Purpose: Same as , but assure $0 < x < 1$; * (positive uniform deviate). */ double esl_rnd_UniformPositive(ESL_RANDOMNESS *r) { double x; do { x = esl_random(r); } while (x == 0.0); return x; } /* Function: esl_rnd_Gaussian() * Synopsis: Generate a Gaussian-distributed sample. * * Purpose: Pick a Gaussian-distributed random variable * with a given and standard deviation , and * return it. * * Implementation is derived from the public domain * RANLIB.c function, written by Barry W. Brown * and James Lovato (M.D. Anderson Cancer Center, Texas * USA) using the method described in * \citep{AhrensDieter73}. * * Original algorithm said to use uniform deviates on [0,1) * interval (i.e. ), but this appears to be * wrong. Use uniform deviates on (0,1) interval instead * (i.e., ). RANLIB, GNU Octave * have made this alteration, possibly inadvertently. * [xref cryptogenomicon post, 13 Oct 2014]. * * Method: Impenetrability of the code is to be blamed on * FORTRAN/f2c lineage. * * Args: r - ESL_RANDOMNESS object * mean - mean of the Gaussian we're sampling from * stddev - standard deviation of the Gaussian */ double esl_rnd_Gaussian(ESL_RANDOMNESS *r, double mean, double stddev) { long i; double snorm,u,s,ustar,aa,w,y,tt; /* These static's are threadsafe: they are magic constants * we will not touch. */ static double a[32] = { 0.0,3.917609E-2,7.841241E-2,0.11777,0.1573107,0.1970991,0.2372021,0.2776904, 0.3186394,0.36013,0.4022501,0.4450965,0.4887764,0.5334097,0.5791322, 0.626099,0.6744898,0.7245144,0.7764218,0.8305109,0.8871466,0.9467818, 1.00999,1.077516,1.150349,1.229859,1.318011,1.417797,1.534121,1.67594, 1.862732,2.153875 }; static double d[31] = { 0.0,0.0,0.0,0.0,0.0,0.2636843,0.2425085,0.2255674,0.2116342,0.1999243, 0.1899108,0.1812252,0.1736014,0.1668419,0.1607967,0.1553497,0.1504094, 0.1459026,0.14177,0.1379632,0.1344418,0.1311722,0.128126,0.1252791, 0.1226109,0.1201036,0.1177417,0.1155119,0.1134023,0.1114027,0.1095039 }; static double t[31] = { 7.673828E-4,2.30687E-3,3.860618E-3,5.438454E-3,7.0507E-3,8.708396E-3, 1.042357E-2,1.220953E-2,1.408125E-2,1.605579E-2,1.81529E-2,2.039573E-2, 2.281177E-2,2.543407E-2,2.830296E-2,3.146822E-2,3.499233E-2,3.895483E-2, 4.345878E-2,4.864035E-2,5.468334E-2,6.184222E-2,7.047983E-2,8.113195E-2, 9.462444E-2,0.1123001,0.136498,0.1716886,0.2276241,0.330498,0.5847031 }; static double h[31] = { 3.920617E-2,3.932705E-2,3.951E-2,3.975703E-2,4.007093E-2,4.045533E-2, 4.091481E-2,4.145507E-2,4.208311E-2,4.280748E-2,4.363863E-2,4.458932E-2, 4.567523E-2,4.691571E-2,4.833487E-2,4.996298E-2,5.183859E-2,5.401138E-2, 5.654656E-2,5.95313E-2,6.308489E-2,6.737503E-2,7.264544E-2,7.926471E-2, 8.781922E-2,9.930398E-2,0.11556,0.1404344,0.1836142,0.2790016,0.7010474 }; u = esl_rnd_UniformPositive(r); s = 0.0; if(u > 0.5) s = 1.0; u += (u-s); u = 32.0*u; i = (long) (u); if(i == 32) i = 31; if(i == 0) goto S100; /* * START CENTER */ ustar = u-(double)i; aa = a[i-1]; S40: if (ustar <= t[i-1]) goto S60; w = (ustar - t[i-1]) * h[i-1]; S50: /* * EXIT (BOTH CASES) */ y = aa+w; snorm = y; if(s == 1.0) snorm = -y; return (stddev*snorm + mean); S60: /* * CENTER CONTINUED */ u = esl_rnd_UniformPositive(r); w = u*(a[i]-aa); tt = (0.5*w+aa)*w; goto S80; S70: tt = u; ustar = esl_rnd_UniformPositive(r); S80: if(ustar > tt) goto S50; u = esl_rnd_UniformPositive(r); if(ustar >= u) goto S70; ustar = esl_rnd_UniformPositive(r); goto S40; S100: /* * START TAIL */ i = 6; aa = a[31]; goto S120; S110: aa += d[i-1]; i += 1; ESL_DASSERT1(( i <= 31 )); S120: u += u; if(u < 1.0) goto S110; u -= 1.0; S140: w = u*d[i-1]; tt = (0.5*w+aa)*w; goto S160; S150: tt = u; S160: ustar = esl_rnd_UniformPositive(r); if(ustar > tt) goto S50; u = esl_rnd_UniformPositive(r); if(ustar >= u) goto S150; u = esl_rnd_UniformPositive(r); goto S140; } /* subfunctions that esl_rnd_Gamma() is going to call: */ static double gamma_ahrens(ESL_RANDOMNESS *r, double a) /* for a >= 3 */ { double V; /* uniform deviates */ double X,Y; double test; do { do { /* generate candidate X */ Y = tan(eslCONST_PI * esl_random(r)); X = Y * sqrt(2.*a -1.) + a - 1.; } while (X <= 0.); /* accept/reject X */ V = esl_random(r); test = (1+Y*Y) * exp( (a-1.)* log(X/(a-1.)) - Y*sqrt(2.*a-1.)); } while (V > test); return X; } static double gamma_integer(ESL_RANDOMNESS *r, unsigned int a) /* for small integer a, a < 12 */ { int i; double U,X; U = 1.; for (i = 0; i < a; i++) U *= esl_rnd_UniformPositive(r); X = -log(U); return X; } static double gamma_fraction(ESL_RANDOMNESS *r, double a) /* for fractional a, 0 < a < 1 */ { /* Knuth 3.4.1, exercise 16, pp. 586-587 */ double p, U, V, X, q; p = eslCONST_E / (a + eslCONST_E); do { U = esl_random(r); V = esl_rnd_UniformPositive(r); if (U < p) { X = pow(V, 1./a); q = exp(-X); } else { X = 1. - log(V); q = pow(X, a-1.); } U = esl_random(r); } while (U >= q); return X; } /* Function: esl_rnd_Gamma() * Synopsis: Returns a random deviate from a Gamma(a, 1) distribution. * * Purpose: Return a random deviate distributed as Gamma(a, 1.) * \citep[pp. 133--134]{Knu-81a}. * * The implementation follows not only Knuth \citep{Knu-81a}, * but also relied on examination of the implementation in * the GNU Scientific Library (libgsl) \citep{Galassi06}. * * Args: r - random number generation seed * a - order of the gamma function; a > 0 */ double esl_rnd_Gamma(ESL_RANDOMNESS *r, double a) { double aint; ESL_DASSERT1(( a > 0. )); aint = floor(a); if (a == aint && a < 12.) return gamma_integer(r, (unsigned int) a); else if (a > 3.) return gamma_ahrens(r, a); else if (a < 1.) return gamma_fraction(r, a); else return gamma_integer(r, aint) + gamma_fraction(r, a-aint); } /* Function: esl_rnd_Dirichlet() * Synopsis: Sample a Dirichlet-distributed random probability vector * Incept: SRE, Wed Feb 17 12:20:53 2016 [H1/76] * * Purpose: Using generator , sample a Dirichlet-distributed * probabilty vector

of elements, using Dirichlet * parameters (also of elements). * * Caller provides the allocated space for

. * * is optional. If it isn't provided (i.e. is * ), sample

uniformly. (That is, use for all i=0..K-1.) * * This routine is redundant with * and in the dirichlet * module. Provided here because there's cases where we * just want to sample a probability vector without * introducing a dependency on all the stats/dirichlet code * in Easel. * * Args: rng : random number generator * alpha : OPTIONAL: Dirichlet parameters 0..K-1, or NULL to use alpha[i]=1 for all i * K : number of elements in alpha, p * p : RESULT: sampled probability vector * * Returns: on success, and

is a sampled probability vector. */ int esl_rnd_Dirichlet(ESL_RANDOMNESS *rng, const double *alpha, int K, double *p) { int i; double norm = 0.; for (i = 0; i < K; i++) { p[i] = esl_rnd_Gamma(rng, (alpha ? alpha[i] : 1.0)); norm += p[i]; } for (i = 0; i < K; i++) p[i] /= norm; return eslOK; } /* Function: esl_rnd_Deal() * Synopsis: Sequential random sample of random integers in range * Incept: SRE, Sun 17 Mar 2019 * * Purpose: Obtain a random sequential sample of integers without * replacement from possible ones, like dealing a hand * of m=5 cards from a deck of n=52 possible cards with * cards numbered <0..n-1>. Caller provides allocated space * , allocated for at least elements. Return the * sample in , in sorted order (smallest to largest). * * Uses the selection sampling algorithm [Knuth, 3.4.2], * which is O(n) time. For more impressive O(m) * performance, see . * * As a special case, if m = 0 (for whatever reason, * probably an edge-case-exercising unit test), do * nothing. is untouched, and can even be . * * Args: m - number of integers to sample * n - range: each sample is 0..n-1 * deal - RESULT: allocated space for sampled integers * * Returns: on success, and the sample of integers * is in . * * Throws: (no abnormal error conditions) */ int esl_rnd_Deal(ESL_RANDOMNESS *rng, int m, int n, int *deal) { int i = 0; int j = 0; ESL_DASSERT1(( m >= 0 )); // m=0 is a special case where can be NULL. ESL_DASSERT1(( n >= 1 )); ESL_DASSERT1(( m <= n )); for (j = 0; j < n && i < m; j++) if ( ((double) (n - j)) * esl_random(rng) < (double) (m - i)) deal[i++] = j; return eslOK; } /***************************************************************** *# 5. Multinomial sampling from discrete probability n-vectors *****************************************************************/ /* Function: esl_rnd_DChoose() * Synopsis: Return random choice from discrete multinomial distribution. * * Purpose: Make a random choice from a normalized discrete * distribution

of elements, where

* is double-precision. Returns the index of the * selected element, $0..N-1$. * *

must be a normalized probability distribution * (i.e. must sum to one). Sampling distribution is * undefined otherwise: that is, a choice will always * be returned, but it might be an arbitrary one. * * All $p_i$ must be $>$ in order to * have a non-zero probability of being sampled. * * is the same, but for floats in

, * and all $p_i$ must be $>$ . */ int esl_rnd_DChoose(ESL_RANDOMNESS *r, const double *p, int N) { double norm = 0.0; /* ~ 1.0 */ double sum = 0.0; /* integrated prob */ double roll = esl_random(r); /* random fraction */ int i; /* counter over the probs */ /* we need to deal with finite roundoff error in p's sum */ for (i = 0; i < N; i++) norm += p[i]; ESL_DASSERT1((norm > 0.999 && norm < 1.001)); for (i = 0; i < N; i++) { sum += p[i]; if (roll < (sum / norm) ) return i; } esl_fatal("unreached code was reached. universe collapses."); return 0; /*notreached*/ } int esl_rnd_FChoose(ESL_RANDOMNESS *r, const float *p, int N) { /* Computing in double precision is important: * casting to (float) gives a [0,1] number instead of [0,1). */ double norm = 0.0; /* ~ 1.0 */ double sum = 0.0; /* integrated prob */ double roll = esl_random(r); /* random fraction */ int i; /* counter over the probs */ for (i = 0; i < N; i++) norm += p[i]; ESL_DASSERT1((norm > 0.99 && norm < 1.01)); for (i = 0; i < N; i++) { sum += (double) p[i]; if (roll < (sum / norm) ) return i; } esl_fatal("unreached code was reached. universe collapses."); return 0; /*notreached*/ } /* Function: esl_rnd_DChooseCDF() * Synopsis: Return random choice from cumulative multinomial distribution. * * Purpose: Given a random number generator and a cumulative * multinomial distribution , sample an element * <0..N-1> from that distribution. Return the index <0..N-1>. * * Caller should be sure that is indeed a * cumulative multinomial distribution -- in particular, that * is tolerably close to 1.0 (within roundoff error). * * When sampling many times from the same multinomial * distribution

, it will generally be faster to * calculate the CDF once using , * then sampling many times from the CDF with * , as opposed to calling * many times, because * has to calculated the CDF before * sampling. This also gives you a bit more control over * error detection: you can make sure that the CDF is ok (p * does sum to ~1.0) before doing a lot of sampling from * it. * * is the same, but for * a single-precision float . * * Args: r - random number generator * cdf - cumulative multinomial distribution, cdf[0..N-1] * N - number of elements in * * Returns: index 0..N-1 of the randomly sampled choice from . * * Note: For large N, it might be advantageous to bisection search the * cdf. For typical N in Easel (up to 20, for amino acid * prob vectors, for example), the naive code below is * faster. We could revisit this if we start sampling * larger vectors. */ int esl_rnd_DChooseCDF(ESL_RANDOMNESS *r, const double *cdf, int N) { double roll = esl_random(r); /* uniform 0.0 <= x < 1.0 */ int i; ESL_DASSERT1((cdf[0] >= 0.0)); ESL_DASSERT1((cdf[N-1] > 0.999 && cdf[N-1] < 1.001)); for (i = 0; i < N; i++) if (roll < cdf[i] / cdf[N-1]) return i; esl_fatal("unreached code is reached. universe goes foom"); return 0; /*notreached*/ } int esl_rnd_FChooseCDF(ESL_RANDOMNESS *r, const float *cdf, int N) { double roll = esl_random(r); /* uniform 0.0 <= x < 1.0. must be double, not float, to guarantee x <1 */ int i; ESL_DASSERT1((cdf[0] >= 0.0)); ESL_DASSERT1((cdf[N-1] > 0.99 && cdf[N-1] < 1.01)); for (i = 0; i < N; i++) if (roll < (double) cdf[i] / (double) cdf[N-1]) return i; // yes, the casts are NECESSARY. Without them, you get a heisenbug on icc/linux. esl_fatal("unreached code is reached. universe goes foom"); return 0; /*notreached*/ } /***************************************************************** * 6. Random data generators (unit testing, etc.) *****************************************************************/ /* Function: esl_rnd_mem() * Synopsis: Overwrite a buffer with random garbage. * Incept: SRE, Fri Feb 19 08:53:07 2016 * * Purpose: Write bytes of random garbage into buffer * , by uniform sampling of values 0..255, * using generator . * * Used in unit tests that are reusing memory, and that * want to make sure that there's no favorable side effects * from that reuse. */ int esl_rnd_mem(ESL_RANDOMNESS *rng, void *buf, int n) { unsigned char *p = (unsigned char *) buf; int i; for (i = 0; i < n; i++) p[i] = (unsigned char) esl_rnd_Roll(rng, 256); return eslOK; } /* Function: esl_rnd_floatstring() * Synopsis: Generate a string representation of a floating point number. * Incept: SRE, Wed 15 Aug 2018 [Hamilton, It's Quiet Uptown] * * Purpose: Generate a string decimal representation of a random * floating point number in , which is space provided * by the caller, allocated for at least 20 characters. * * The string representation of the number consists of: * * an optional - sign (50%) * * a 1-6 digit integer part; (1/7 '0'; else 1/7 for each len, [1-9][0-9]* uniformly) * * an optional fractional part (50%), consisting of: * - '.' * - a 1-7 digit fractional part; 1/7 for each len, [0-9]* uniformly * * an optional exponent (50%), consisting of: * - 'e' * - -20..e20, 1/41 uniformly. * * '\0' terminator. * * Maximum length is 1+6+1+7+4+1 = 20. * * The string representation is an intersection of what's * valid for , JSON number values, and C. JSON * number values do not permit numbers like "1." (a * decimal part, decimal point, no fractional part), nor * hexadecimal representations, nor leading or trailing * whitespace. * * The generated number does not attempt to exercise * extreme values. The absolute magnitude of non-zero * numbers ranges from 0.0000001e-20..999999e20 (1e-27 to * ~1e27), well within IEEE754 FLT_MIN..FLT_MAX * range. Special values "infinity" and "nan" are not * generated. Zero can be represented by many different * patterns <-?0.0+(e-?..)?>. * * Returns: on success. */ int esl_rnd_floatstring(ESL_RANDOMNESS *rng, char *s) { int i = 0; int n; int exponent; if (esl_rnd_Roll(rng, 2)) s[i++] = '-'; n = esl_rnd_Roll(rng, 7); // length of integer part. s[i++] = (n-- == 0) ? '0' : '0' + (1 + esl_rnd_Roll(rng, 9)); // No 0 prefix except "0." while (n-- > 0) s[i++] = '0' + esl_rnd_Roll(rng, 10); if (esl_rnd_Roll(rng, 2)) // optional fractional part { n = 1 + esl_rnd_Roll(rng, 7); s[i++] = '.'; while (n--) s[i++] = '0' + esl_rnd_Roll(rng, 10); } if (esl_rnd_Roll(rng, 2)) // optional exponent { s[i++] = 'e'; exponent = -20 + esl_rnd_Roll(rng, 41); i += sprintf(s+i, "%d", exponent); } s[i++] = '\0'; ESL_DASSERT1(( i <= 20 )); return eslOK; } /***************************************************************** * 7. Benchmark driver *****************************************************************/ #ifdef eslRANDOM_BENCHMARK /* gcc -O3 -malign-double -o esl_random_benchmark -I. -L. -DeslRANDOM_BENCHMARK esl_random.c -leasel -lm ./esl_random_benchmark -N 1000000000 ./esl_random_benchmark -f -N 1000000000 ./esl_random_benchmark -r -N1000000 ./esl_random_benchmark -fr -N 1000000000 esl_random() esl_randomness_Init() iter cpu time per call iter cpu time per call ---- -------- -------- ---- ---------- --------- 27 Dec 08 on wanderoo: 1e7 0.78s 78 nsec 1e6 2.08s 2.1 usec ran2() from NR 30 May 09 on wanderoo: 1e9 8.39s 8 nsec 1e6 5.98s 6.0 usec Mersenne Twister 1e9 5.73s 6 nsec 1e8 2.51s 0.03 usec Knuth 22 Aug 18 on wyvern: 1e9 3.31s 3 nsec 1e7 8.71s 0.8 usec Mersenne Twister */ #include "easel.h" #include "esl_composition.h" #include "esl_getopts.h" #include "esl_random.h" #include "esl_stopwatch.h" #include "esl_vectorops.h" static ESL_OPTIONS options[] = { /* name type default env range toggles reqs incomp help docgroup*/ { "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 }, { "-c", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "benchmark DChooseCDF()", 0 }, { "-d", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "benchmark DChoose()", 0 }, { "-f", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "run fast version instead of MT19937", 0 }, { "-r", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "benchmark _Init(), not just random()", 0 }, { "-N", eslARG_INT, "10000000",NULL, NULL, NULL, NULL, NULL, "number of trials", 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, }; static char usage[] = "[-options]"; static char banner[] = "benchmarking speed of random number generator"; int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage); ESL_RANDOMNESS *r = (esl_opt_GetBoolean(go, "-f") == TRUE ? esl_randomness_CreateFast(42) : esl_randomness_Create(42)); ESL_STOPWATCH *w = esl_stopwatch_Create(); int N = esl_opt_GetInteger(go, "-N"); double p[20]; double cdf[20]; esl_composition_BL62(p); esl_vec_DCDF(p, 20, cdf); esl_stopwatch_Start(w); if (esl_opt_GetBoolean(go, "-c")) { while (N--) esl_rnd_DChoose(r, p, 20); } else if (esl_opt_GetBoolean(go, "-d")) { while (N--) esl_rnd_DChooseCDF(r, cdf, 20); } else if (esl_opt_GetBoolean(go, "-r")) { while (N--) esl_randomness_Init(r, 42); } else { while (N--) esl_random(r); } esl_stopwatch_Stop(w); esl_stopwatch_Display(stdout, w, "# CPU Time: "); esl_stopwatch_Destroy(w); esl_randomness_Destroy(r); esl_getopts_Destroy(go); return 0; } #endif /*eslRANDOM_BENCHMARK*/ /*----------------- end, benchmark driver -----------------------*/ /***************************************************************** * 8. Unit tests. *****************************************************************/ #ifdef eslRANDOM_TESTDRIVE #include "esl_vectorops.h" #include "esl_stats.h" #include "esl_dirichlet.h" /* The esl_random() unit test: * a binned frequency test. */ static void utest_random(ESL_RANDOMNESS *r, int n, int nbins, int be_verbose) { char msg[] = "esl_random() unit test failed"; int *counts = NULL; double X2p = 0.; int i; int sample; double X2, exp, diff; if ((counts = malloc(sizeof(int) * nbins)) == NULL) esl_fatal(msg); esl_vec_ISet(counts, nbins, 0); for (i = 0; i < n; i++) { sample = esl_rnd_Roll(r, nbins); if (sample < 0 || sample >= nbins) esl_fatal(msg); counts[sample]++; } /* X^2 value: \sum (o_i - e_i)^2 / e_i */ for (X2 = 0., i = 0; i < nbins; i++) { exp = (double) n / (double) nbins; diff = (double) counts[i] - exp; X2 += diff*diff/exp; } if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal(msg); if (be_verbose) printf("random(): \t%g\n", X2p); if (X2p < 0.01) esl_fatal(msg); free(counts); return; } /* The DChoose() and FChoose() unit tests. */ static void utest_choose(ESL_RANDOMNESS *r, int n, int nbins, int be_verbose) { double *pd = NULL; /* probability vector, double */ double *pdc = NULL; /* CDF, double */ float *pf = NULL; /* probability vector, float */ float *pfc = NULL; /* CDF, float */ int *ct = NULL; int i; double X2, diff, exp, X2p; if ((pd = malloc(sizeof(double) * nbins)) == NULL) esl_fatal("malloc failed"); if ((pdc = malloc(sizeof(double) * nbins)) == NULL) esl_fatal("malloc failed"); if ((pf = malloc(sizeof(float) * nbins)) == NULL) esl_fatal("malloc failed"); if ((pfc = malloc(sizeof(float) * nbins)) == NULL) esl_fatal("malloc failed"); if ((ct = malloc(sizeof(int) * nbins)) == NULL) esl_fatal("malloc failed"); /* Sample a random multinomial probability vector. */ if (esl_dirichlet_DSampleUniform(r, nbins, pd) != eslOK) esl_fatal("dirichlet sample failed"); esl_vec_D2F(pd, nbins, pf); /* Test esl_rnd_DChoose(): * sample observed counts, chi-squared test against expected */ esl_vec_ISet(ct, nbins, 0); for (i = 0; i < n; i++) ct[esl_rnd_DChoose(r, pd, nbins)]++; for (X2 = 0., i=0; i < nbins; i++) { exp = (double) n * pd[i]; diff = (double) ct[i] - exp; X2 += diff*diff/exp; } if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed"); if (be_verbose) printf("DChoose(): \t%g\n", X2p); if (X2p < 0.01) esl_fatal("chi squared test failed"); /* Repeat above for FChoose(). */ esl_vec_ISet(ct, nbins, 0); for (i = 0; i < n; i++) ct[esl_rnd_FChoose(r, pf, nbins)]++; for (X2 = 0., i=0; i < nbins; i++) { exp = (double) n * pd[i]; diff = (double) ct[i] - exp; X2 += diff*diff/exp; } if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed"); if (be_verbose) printf("FChoose(): \t%g\n", X2p); if (X2p < 0.01) esl_fatal("chi squared test failed"); /* esl_rnd_DChooseCDF(). */ esl_vec_ISet(ct, nbins, 0); esl_vec_DCDF(pd, nbins, pdc); for (i = 0; i < n; i++) ct[esl_rnd_DChooseCDF(r, pdc, nbins)]++; for (X2 = 0., i=0; i < nbins; i++) { exp = (double) n * pd[i]; diff = (double) ct[i] - exp; X2 += diff*diff/exp; } if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed"); if (be_verbose) printf("DChoose(): \t%g\n", X2p); if (X2p < 0.01) esl_fatal("chi squared test failed"); /* esl_rnd_FChooseCDF() */ esl_vec_ISet(ct, nbins, 0); esl_vec_FCDF(pf, nbins, pfc); for (i = 0; i < n; i++) ct[esl_rnd_FChooseCDF(r, pfc, nbins)]++; for (X2 = 0., i=0; i < nbins; i++) { exp = (double) n * pf[i]; diff = (double) ct[i] - exp; X2 += diff*diff/exp; } if (esl_stats_ChiSquaredTest(nbins, X2, &X2p) != eslOK) esl_fatal("chi square eval failed"); if (be_verbose) printf("DChoose(): \t%g\n", X2p); if (X2p < 0.01) esl_fatal("chi squared test failed"); free(pd); free(pdc); free(pf); free(pfc); free(ct); return; } /* utest_Deal() * tests esl_rnd_Deal() * * If deals are random, each possible integer is sampled uniformly. * Take deals of integers from possible . * Expected count of each integer = nsamp * (m/n), +/- s.d. \sqrt(u) * Test that min, max are within +/- 6 sd. * * Can fail stochastically, so caller should default to an * with a fixed RNG seed. */ static void utest_Deal(ESL_RANDOMNESS *rng) { char msg[] = "esl_random deal unit test failed"; int m = 100; int n = 1000; int nsamp = 10000; int *deal = malloc(sizeof(int) * m); int *ct = malloc(sizeof(int) * n); double expected_mean = ((double) m / (double) n) * (double) nsamp; double expected_sd = sqrt(expected_mean); int max_allowed = (int) round( expected_mean + 6. * expected_sd); int min_allowed = (int) round( expected_mean - 6. * expected_sd); int i; if (deal == NULL || ct == NULL) esl_fatal(msg); esl_vec_ISet(ct, n, 0); while (nsamp--) { esl_rnd_Deal(rng, m, n, deal); for (i = 0; i < m; i++) ct[deal[i]]++; } if (esl_vec_IMax(ct, n) > max_allowed) esl_fatal(msg); if (esl_vec_IMin(ct, n) < min_allowed) esl_fatal(msg); free(deal); free(ct); } #endif /*eslRANDOM_TESTDRIVE*/ /*-------------------- end, unit tests --------------------------*/ /***************************************************************** * 9. Test driver. *****************************************************************/ #ifdef eslRANDOM_TESTDRIVE #include "esl_config.h" #include #include "easel.h" #include "esl_dirichlet.h" #include "esl_getopts.h" #include "esl_random.h" #include "esl_randomseq.h" #include "esl_vectorops.h" static ESL_OPTIONS options[] = { /* name type default env range togs reqs incomp help docgrp */ {"-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show help and usage", 0}, {"-b", eslARG_INT, "20", NULL, "n>0",NULL, NULL, NULL, "number of test bins", 0}, {"-n", eslARG_INT, "1000000", NULL, "n>0",NULL, NULL, NULL, "number of samples", 0}, {"-s", eslARG_INT, "42", NULL, NULL, NULL, NULL, NULL, "set random number seed to ", 0}, {"-v", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show verbose output", 0}, {"--mtbits",eslARG_STRING,NULL,NULL, NULL, NULL, NULL, NULL, "save MT bit file for NIST benchmark",0}, {"--kbits", eslARG_STRING,NULL,NULL, NULL, NULL, NULL, NULL, "save Knuth bit file for NIST benchmark",0}, { 0,0,0,0,0,0,0,0,0,0}, }; static char usage[] = "[-options]"; static char banner[] = "test driver for random module"; static int save_bitfile(char *bitfile, ESL_RANDOMNESS *r, int n); int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage); ESL_RANDOMNESS *r1 = esl_randomness_Create(esl_opt_GetInteger(go, "-s")); ESL_RANDOMNESS *r2 = esl_randomness_CreateFast(esl_opt_GetInteger(go, "-s")); char *mtbitfile = esl_opt_GetString (go, "--mtbits"); char *kbitfile = esl_opt_GetString (go, "--kbits"); int nbins = esl_opt_GetInteger(go, "-b"); int n = esl_opt_GetInteger(go, "-n"); int be_verbose = esl_opt_GetBoolean(go, "-v"); fprintf(stderr, "## %s\n", argv[0]); fprintf(stderr, "# rng seed 1 (slow) = %" PRIu32 "\n", esl_randomness_GetSeed(r1)); fprintf(stderr, "# rng seed 2 (fast) = %" PRIu32 "\n", esl_randomness_GetSeed(r2)); utest_random(r1, n, nbins, be_verbose); utest_choose(r1, n, nbins, be_verbose); utest_random(r2, n, nbins, be_verbose); utest_choose(r2, n, nbins, be_verbose); utest_Deal(r1); if (mtbitfile) save_bitfile(mtbitfile, r1, n); if (kbitfile) save_bitfile(kbitfile, r2, n); fprintf(stderr, "# status = ok\n"); esl_randomness_Destroy(r1); esl_randomness_Destroy(r2); esl_getopts_Destroy(go); return 0; } static int save_bitfile(char *bitfile, ESL_RANDOMNESS *r, int n) { FILE *fp = NULL; int b,i; long x; /* Open the file. */ if ((fp = fopen(bitfile, "w")) == NULL) esl_fatal("failed to open %s for writing", bitfile); /* Sample random numbers, output 32n random bits to the file. */ for (i = 0; i < n; i++) { x = (r->type == eslRND_FAST ? knuth(r) : mersenne_twister(r)); /* generate a 32 bit random variate by MT19937 */ for (b = 0; b < 32; b++) { if (x & 01) fprintf(fp, "1"); else fprintf(fp, "0"); x >>= 1; } fprintf(fp, "\n"); } fclose(fp); return eslOK; } #endif /*eslRANDOM_TESTDRIVE*/ /***************************************************************** * 10. Example. *****************************************************************/ #ifdef eslRANDOM_EXAMPLE /*::cexcerpt::random_example::begin::*/ /* compile: cc -I. -o esl_random_example -DeslRANDOM_EXAMPLE esl_random.c esl_getopts.c easel.c -lm * run: ./random_example 42 */ #include #include "easel.h" #include "esl_getopts.h" #include "esl_random.h" /* In Easel and HMMER, the option for setting the seed is typically -s, sometimes --seed. * Default is usually 0 because we want a "random" seed. Less commonly, "42" for a fixed seed; * rarely, a different fixed seed. * * Generally you want to use esl_randomness_Create(), to get a Mersenne Twister. The "fast" * RNG you get from esl_randomness_CreateFast() isn't all that much faster (~25% per sample) * but has much worse quality in its randomness. */ static ESL_OPTIONS options[] = { /* name type default env range toggles reqs incomp help docgroup*/ { "-h", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "show brief help on version and usage", 0 }, { "-i", eslARG_NONE, FALSE, NULL, NULL, NULL, NULL, NULL, "sample uint32's instead of doubles", 0 }, { "-n", eslARG_INT, "20", NULL, NULL, NULL, NULL, NULL, "number of random samples to show", 0 }, { "-s", eslARG_INT, "0", NULL, NULL, NULL, NULL, NULL, "set random number seed to ", 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, }; static char usage[] = "[-options]"; static char banner[] = "example of using random module"; int main(int argc, char **argv) { ESL_GETOPTS *go = esl_getopts_CreateDefaultApp(options, 0, argc, argv, banner, usage); ESL_RANDOMNESS *rng = esl_randomness_Create( esl_opt_GetInteger(go, "-s") ); int do_uint32 = esl_opt_GetBoolean(go, "-i"); int n = esl_opt_GetInteger(go, "-n"); printf("RNG seed: %" PRIu32 "\n", esl_randomness_GetSeed(rng)); printf("\nA sequence of %d pseudorandom numbers:\n", n); if (do_uint32) while (n--) printf("%" PRIu32 "\n", esl_random_uint32(rng)); else while (n--) printf("%f\n", esl_random(rng)); printf("\nInternal dump of RNG state:\n"); esl_randomness_Dump(stdout, rng); esl_randomness_Destroy(rng); esl_getopts_Destroy(go); return 0; } /*::cexcerpt::random_example::end::*/ #endif /*eslRANDOM_EXAMPLE*/