\section{Overview of all the statistics modules} All statistics modules require the \eslmod{stats} module, in addition to the core \eslmod{easel} module. \vspace{1em} \begin{tabular}{ll}\hline \multicolumn{2}{c}{\textbf{Core support:}}\\ \eslmod{stats} & Shared and special functions. \\ \multicolumn{2}{c}{\textbf{Distributions:}}\\ \eslmod{dirichlet} & Dirichlet densities. \\ \eslmod{exponential} & Exponential densities.\\ \eslmod{gamma} & Gamma densities.\\ \eslmod{gev} & Generalized extreme value densities.\\ \eslmod{gumbel} & Gumbel densities.\\ \eslmod{hyperexp} & Hyperexponential densities.\\ \eslmod{mixdchlet} & Mixture Dirichlet densities.\\ \eslmod{mixgev} & Mixtures of generalized extreme value densities.\\ \eslmod{stretchexp} & Stretched exponential densities.\\ \eslmod{weibull} & Weibull densities.\\ \hline \end{tabular} \subsection{Available densities and distributions} Every module implements seven functions: \begin{tabular}{lll} \ccode{esl\_*\_pdf} & $P(X=x)$ & probability density function\\ \ccode{esl\_*\_logpdf} & $\log P(X=x)$ & natural log of the PDF \\ \ccode{esl\_*\_cdf} & $P(X \leq x)$ & cumulative distribution function\\ \ccode{esl\_*\_logcdf} & $\log P(X \leq x)$ & natural log of the CDF\\ \ccode{esl\_*\_surv} & $P(X > x)$ & survival function (right tail mass) \\ \ccode{esl\_*\_logsurv} & $\log P(X > x)$ & natural log of the survival function\\ \ccode{esl\_*\_invcdf} & ${ x \mid P(X \leq x) = p }$ & inverse CDF (often useful for sampling)\\ \end{tabular} \subsubsection{Overview of parameters} A summary of the parameters of the elemental distributions is as follows: \begin{tabular}{lcccc} \hline \textbf{Distribution}& \textbf{Location} & \textbf{Scale} & \textbf{Shape} & \textbf{PDF} \\\hline \eslmod{dirichlet} & \multicolumn{3}{c}{ $\alpha_i > 0$, $i=1..K$ } & $\frac{\Gamma{\sum_i \alpha_i}}{\prod_i \Gamma(\alpha_i)} \prod_i p_i^{\alpha_i-1}$\\ \eslmod{exponential} & $\mu$ & $\lambda$ & - & $\lambda e^{-\lambda (x - \mu)}$\\ \eslmod{gamma} & $\mu$ & $\lambda$ & $\tau$ & $ \frac{\lambda^{\tau}}{\Gamma(\tau)} (x-\mu)^{\tau-1} e^{-\lambda (x - \mu)} $\\ \eslmod{gev} & $\mu$ & $\lambda$ & $\alpha$ & $ \lambda \left[ 1 + \alpha \lambda (x - \mu) \right]^{-\frac{\alpha+1}{\alpha}} \exp \left\{ - \left[ 1 + \alpha \lambda (x - \mu) \right]^{-\frac{1}{\alpha}} \right\} $\\ \eslmod{gumbel} & $\mu$ & $\lambda$ & - & $ \lambda \exp \left[ -\lambda (x - \mu) - e^{- \lambda (x - \mu)} \right] $\\ \eslmod{stretchexp} & $\mu$ & $\lambda$ & $\tau$ & $ \frac{\lambda \tau}{\Gamma(\frac{1}{\tau})} e^{- [\lambda(x-\mu)]^{\tau}} $\\ \eslmod{weibull} & $\mu$ & $\lambda$ & $\tau$ & $ \lambda \tau [\lambda(x - \mu)]^{\tau-1} e^{- [\lambda(x-\mu)]^{\tau}}$\\ \hline \end{tabular} Additionally, there are \textbf{mixture distributions} composed of a sum of one of the above elemental densities: \vspace{1em} \begin{tabular}{ll} \hline \textbf{Distribution} & \textbf{PDF}\\ \hline \eslmod{hyperexp} & $\sum_k q_k P(x \mid \mbox{exponential:}\mu^k,\lambda^k)$\\ \eslmod{mixdchlet} & $\sum_k q_k P(\vec{p} \mid \mbox{Dirichlet:}\vec{\alpha}^k)$\\ \eslmod{mixgev} & $\sum_k q_k P(x \mid \mbox{GEV:}\mu^k,\lambda^k,\alpha^k)$\\ \hline \end{tabular} \subsubsection{Dynamic range} \subsection{Using histograms} \subsection{Parameter fitting} \subsubsection{Complete data} \subsubsection{Binned data} \subsubsection{Censored data} \subsubsection{Truncated data} \subsection{Sampling}