// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // // Author: Jyrki Alakuijala (jyrki.alakuijala@gmail.com) // // The physical architecture of butteraugli is based on the following naming // convention: // * Opsin - dynamics of the photosensitive chemicals in the retina // with their immediate electrical processing // * Xyb - hybrid opponent/trichromatic color space // x is roughly red-subtract-green. // y is yellow. // b is blue. // Xyb values are computed from Opsin mixing, not directly from rgb. // * Mask - for visual masking // * Hf - color modeling for spatially high-frequency features // * Lf - color modeling for spatially low-frequency features // * Diffmap - to cluster and build an image of error between the images // * Blur - to hold the smoothing code #include "lib/jxl/butteraugli/butteraugli.h" #include #include #include #include #include #include #include #include #include #if PROFILER_ENABLED #include #endif // PROFILER_ENABLED #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/butteraugli/butteraugli.cc" #include #include "lib/jxl/base/printf_macros.h" #include "lib/jxl/base/profiler.h" #include "lib/jxl/base/status.h" #include "lib/jxl/convolve.h" #include "lib/jxl/fast_math-inl.h" #include "lib/jxl/gauss_blur.h" #include "lib/jxl/image_ops.h" #ifndef JXL_BUTTERAUGLI_ONCE #define JXL_BUTTERAUGLI_ONCE namespace jxl { std::vector ComputeKernel(float sigma) { const float m = 2.25; // Accuracy increases when m is increased. const double scaler = -1.0 / (2.0 * sigma * sigma); const int diff = std::max(1, m * std::fabs(sigma)); std::vector kernel(2 * diff + 1); for (int i = -diff; i <= diff; ++i) { kernel[i + diff] = std::exp(scaler * i * i); } return kernel; } void ConvolveBorderColumn(const ImageF& in, const std::vector& kernel, const size_t x, float* BUTTERAUGLI_RESTRICT row_out) { const size_t offset = kernel.size() / 2; int minx = x < offset ? 0 : x - offset; int maxx = std::min(in.xsize() - 1, x + offset); float weight = 0.0f; for (int j = minx; j <= maxx; ++j) { weight += kernel[j - x + offset]; } float scale = 1.0f / weight; for (size_t y = 0; y < in.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y); float sum = 0.0f; for (int j = minx; j <= maxx; ++j) { sum += row_in[j] * kernel[j - x + offset]; } row_out[y] = sum * scale; } } // Computes a horizontal convolution and transposes the result. void ConvolutionWithTranspose(const ImageF& in, const std::vector& kernel, ImageF* BUTTERAUGLI_RESTRICT out) { PROFILER_FUNC; JXL_CHECK(out->xsize() == in.ysize()); JXL_CHECK(out->ysize() == in.xsize()); const size_t len = kernel.size(); const size_t offset = len / 2; float weight_no_border = 0.0f; for (size_t j = 0; j < len; ++j) { weight_no_border += kernel[j]; } const float scale_no_border = 1.0f / weight_no_border; const size_t border1 = std::min(in.xsize(), offset); const size_t border2 = in.xsize() > offset ? in.xsize() - offset : 0; std::vector scaled_kernel(len / 2 + 1); for (size_t i = 0; i <= len / 2; ++i) { scaled_kernel[i] = kernel[i] * scale_no_border; } // middle switch (len) { case 7: { PROFILER_ZONE("conv7"); const float sk0 = scaled_kernel[0]; const float sk1 = scaled_kernel[1]; const float sk2 = scaled_kernel[2]; const float sk3 = scaled_kernel[3]; for (size_t y = 0; y < in.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset; for (size_t x = border1; x < border2; ++x, ++row_in) { const float sum0 = (row_in[0] + row_in[6]) * sk0; const float sum1 = (row_in[1] + row_in[5]) * sk1; const float sum2 = (row_in[2] + row_in[4]) * sk2; const float sum = (row_in[3]) * sk3 + sum0 + sum1 + sum2; float* BUTTERAUGLI_RESTRICT row_out = out->Row(x); row_out[y] = sum; } } } break; case 13: { PROFILER_ZONE("conv15"); for (size_t y = 0; y < in.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset; for (size_t x = border1; x < border2; ++x, ++row_in) { float sum0 = (row_in[0] + row_in[12]) * scaled_kernel[0]; float sum1 = (row_in[1] + row_in[11]) * scaled_kernel[1]; float sum2 = (row_in[2] + row_in[10]) * scaled_kernel[2]; float sum3 = (row_in[3] + row_in[9]) * scaled_kernel[3]; sum0 += (row_in[4] + row_in[8]) * scaled_kernel[4]; sum1 += (row_in[5] + row_in[7]) * scaled_kernel[5]; const float sum = (row_in[6]) * scaled_kernel[6]; float* BUTTERAUGLI_RESTRICT row_out = out->Row(x); row_out[y] = sum + sum0 + sum1 + sum2 + sum3; } } break; } case 15: { PROFILER_ZONE("conv15"); for (size_t y = 0; y < in.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset; for (size_t x = border1; x < border2; ++x, ++row_in) { float sum0 = (row_in[0] + row_in[14]) * scaled_kernel[0]; float sum1 = (row_in[1] + row_in[13]) * scaled_kernel[1]; float sum2 = (row_in[2] + row_in[12]) * scaled_kernel[2]; float sum3 = (row_in[3] + row_in[11]) * scaled_kernel[3]; sum0 += (row_in[4] + row_in[10]) * scaled_kernel[4]; sum1 += (row_in[5] + row_in[9]) * scaled_kernel[5]; sum2 += (row_in[6] + row_in[8]) * scaled_kernel[6]; const float sum = (row_in[7]) * scaled_kernel[7]; float* BUTTERAUGLI_RESTRICT row_out = out->Row(x); row_out[y] = sum + sum0 + sum1 + sum2 + sum3; } } break; } case 33: { PROFILER_ZONE("conv33"); for (size_t y = 0; y < in.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y) + border1 - offset; for (size_t x = border1; x < border2; ++x, ++row_in) { float sum0 = (row_in[0] + row_in[32]) * scaled_kernel[0]; float sum1 = (row_in[1] + row_in[31]) * scaled_kernel[1]; float sum2 = (row_in[2] + row_in[30]) * scaled_kernel[2]; float sum3 = (row_in[3] + row_in[29]) * scaled_kernel[3]; sum0 += (row_in[4] + row_in[28]) * scaled_kernel[4]; sum1 += (row_in[5] + row_in[27]) * scaled_kernel[5]; sum2 += (row_in[6] + row_in[26]) * scaled_kernel[6]; sum3 += (row_in[7] + row_in[25]) * scaled_kernel[7]; sum0 += (row_in[8] + row_in[24]) * scaled_kernel[8]; sum1 += (row_in[9] + row_in[23]) * scaled_kernel[9]; sum2 += (row_in[10] + row_in[22]) * scaled_kernel[10]; sum3 += (row_in[11] + row_in[21]) * scaled_kernel[11]; sum0 += (row_in[12] + row_in[20]) * scaled_kernel[12]; sum1 += (row_in[13] + row_in[19]) * scaled_kernel[13]; sum2 += (row_in[14] + row_in[18]) * scaled_kernel[14]; sum3 += (row_in[15] + row_in[17]) * scaled_kernel[15]; const float sum = (row_in[16]) * scaled_kernel[16]; float* BUTTERAUGLI_RESTRICT row_out = out->Row(x); row_out[y] = sum + sum0 + sum1 + sum2 + sum3; } } break; } default: printf("Warning: Unexpected kernel size! %" PRIuS "\n", len); for (size_t y = 0; y < in.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_in = in.Row(y); for (size_t x = border1; x < border2; ++x) { const int d = x - offset; float* BUTTERAUGLI_RESTRICT row_out = out->Row(x); float sum = 0.0f; size_t j; for (j = 0; j <= len / 2; ++j) { sum += row_in[d + j] * scaled_kernel[j]; } for (; j < len; ++j) { sum += row_in[d + j] * scaled_kernel[len - 1 - j]; } row_out[y] = sum; } } } // left border for (size_t x = 0; x < border1; ++x) { ConvolveBorderColumn(in, kernel, x, out->Row(x)); } // right border for (size_t x = border2; x < in.xsize(); ++x) { ConvolveBorderColumn(in, kernel, x, out->Row(x)); } } // A blur somewhat similar to a 2D Gaussian blur. // See: https://en.wikipedia.org/wiki/Gaussian_blur // // This is a bottleneck because the sigma can be quite large (>7). We can use // gauss_blur.cc (runtime independent of sigma, closer to a 4*sigma truncated // Gaussian and our 2.25 in ComputeKernel), but its boundary conditions are // zero-valued. This leads to noticeable differences at the edges of diffmaps. // We retain a special case for 5x5 kernels (even faster than gauss_blur), // optionally use gauss_blur followed by fixup of the borders for large images, // or fall back to the previous truncated FIR followed by a transpose. void Blur(const ImageF& in, float sigma, const ButteraugliParams& params, BlurTemp* temp, ImageF* out) { std::vector kernel = ComputeKernel(sigma); // Separable5 does an in-place convolution, so this fast path is not safe if // in aliases out. if (kernel.size() == 5 && &in != out) { float sum_weights = 0.0f; for (const float w : kernel) { sum_weights += w; } const float scale = 1.0f / sum_weights; const float w0 = kernel[2] * scale; const float w1 = kernel[1] * scale; const float w2 = kernel[0] * scale; const WeightsSeparable5 weights = { {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}, {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}, }; Separable5(in, Rect(in), weights, /*pool=*/nullptr, out); return; } ImageF* JXL_RESTRICT temp_t = temp->GetTransposed(in); ConvolutionWithTranspose(in, kernel, temp_t); ConvolutionWithTranspose(*temp_t, kernel, out); } // Allows PaddedMaltaUnit to call either function via overloading. struct MaltaTagLF {}; struct MaltaTag {}; } // namespace jxl #endif // JXL_BUTTERAUGLI_ONCE #include HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Vec; template HWY_INLINE V MaximumClamp(D d, V v, double kMaxVal) { static const double kMul = 0.724216145665; const V mul = Set(d, kMul); const V maxval = Set(d, kMaxVal); // If greater than maxval or less than -maxval, replace with if_*. const V if_pos = MulAdd(v - maxval, mul, maxval); const V if_neg = MulSub(v + maxval, mul, maxval); const V pos_or_v = IfThenElse(v >= maxval, if_pos, v); return IfThenElse(v < Neg(maxval), if_neg, pos_or_v); } // Make area around zero less important (remove it). template HWY_INLINE V RemoveRangeAroundZero(const D d, const double kw, const V x) { const auto w = Set(d, kw); return IfThenElse(x > w, x - w, IfThenElseZero(x < Neg(w), x + w)); } // Make area around zero more important (2x it until the limit). template HWY_INLINE V AmplifyRangeAroundZero(const D d, const double kw, const V x) { const auto w = Set(d, kw); return IfThenElse(x > w, x + w, IfThenElse(x < Neg(w), x - w, x + x)); } // XybLowFreqToVals converts from low-frequency XYB space to the 'vals' space. // Vals space can be converted to L2-norm space (Euclidean and normalized) // through visual masking. template HWY_INLINE void XybLowFreqToVals(const D d, const V& x, const V& y, const V& b_arg, V* HWY_RESTRICT valx, V* HWY_RESTRICT valy, V* HWY_RESTRICT valb) { static const double xmuli = 32.2217497012; static const double ymuli = 13.7697791434; static const double bmuli = 47.504615728; static const double y_to_b_muli = -0.362267051518; const V xmul = Set(d, xmuli); const V ymul = Set(d, ymuli); const V bmul = Set(d, bmuli); const V y_to_b_mul = Set(d, y_to_b_muli); const V b = MulAdd(y_to_b_mul, y, b_arg); *valb = b * bmul; *valx = x * xmul; *valy = y * ymul; } void SuppressXByY(const ImageF& in_x, const ImageF& in_y, const double yw, ImageF* HWY_RESTRICT out) { JXL_DASSERT(SameSize(in_x, in_y) && SameSize(in_x, *out)); const size_t xsize = in_x.xsize(); const size_t ysize = in_x.ysize(); const HWY_FULL(float) d; static const double s = 0.653020556257; const auto sv = Set(d, s); const auto one_minus_s = Set(d, 1.0 - s); const auto ywv = Set(d, yw); for (size_t y = 0; y < ysize; ++y) { const float* HWY_RESTRICT row_x = in_x.ConstRow(y); const float* HWY_RESTRICT row_y = in_y.ConstRow(y); float* HWY_RESTRICT row_out = out->Row(y); for (size_t x = 0; x < xsize; x += Lanes(d)) { const auto vx = Load(d, row_x + x); const auto vy = Load(d, row_y + x); const auto scaler = MulAdd(ywv / MulAdd(vy, vy, ywv), one_minus_s, sv); Store(scaler * vx, d, row_out + x); } } } static void SeparateFrequencies(size_t xsize, size_t ysize, const ButteraugliParams& params, BlurTemp* blur_temp, const Image3F& xyb, PsychoImage& ps) { PROFILER_FUNC; const HWY_FULL(float) d; // Extract lf ... static const double kSigmaLf = 7.15593339443; static const double kSigmaHf = 3.22489901262; static const double kSigmaUhf = 1.56416327805; ps.mf = Image3F(xsize, ysize); ps.hf[0] = ImageF(xsize, ysize); ps.hf[1] = ImageF(xsize, ysize); ps.lf = Image3F(xyb.xsize(), xyb.ysize()); ps.mf = Image3F(xyb.xsize(), xyb.ysize()); for (int i = 0; i < 3; ++i) { Blur(xyb.Plane(i), kSigmaLf, params, blur_temp, &ps.lf.Plane(i)); // ... and keep everything else in mf. for (size_t y = 0; y < ysize; ++y) { const float* BUTTERAUGLI_RESTRICT row_xyb = xyb.PlaneRow(i, y); const float* BUTTERAUGLI_RESTRICT row_lf = ps.lf.ConstPlaneRow(i, y); float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(i, y); for (size_t x = 0; x < xsize; x += Lanes(d)) { const auto mf = Load(d, row_xyb + x) - Load(d, row_lf + x); Store(mf, d, row_mf + x); } } if (i == 2) { Blur(ps.mf.Plane(i), kSigmaHf, params, blur_temp, &ps.mf.Plane(i)); break; } // Divide mf into mf and hf. for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(i, y); float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[i].Row(y); for (size_t x = 0; x < xsize; x += Lanes(d)) { Store(Load(d, row_mf + x), d, row_hf + x); } } Blur(ps.mf.Plane(i), kSigmaHf, params, blur_temp, &ps.mf.Plane(i)); static const double kRemoveMfRange = 0.29; static const double kAddMfRange = 0.1; if (i == 0) { for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(0, y); float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[0].Row(y); for (size_t x = 0; x < xsize; x += Lanes(d)) { auto mf = Load(d, row_mf + x); auto hf = Load(d, row_hf + x) - mf; mf = RemoveRangeAroundZero(d, kRemoveMfRange, mf); Store(mf, d, row_mf + x); Store(hf, d, row_hf + x); } } } else { for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_mf = ps.mf.PlaneRow(1, y); float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[1].Row(y); for (size_t x = 0; x < xsize; x += Lanes(d)) { auto mf = Load(d, row_mf + x); auto hf = Load(d, row_hf + x) - mf; mf = AmplifyRangeAroundZero(d, kAddMfRange, mf); Store(mf, d, row_mf + x); Store(hf, d, row_hf + x); } } } } // Temporarily used as output of SuppressXByY ps.uhf[0] = ImageF(xsize, ysize); ps.uhf[1] = ImageF(xsize, ysize); // Suppress red-green by intensity change in the high freq channels. static const double suppress = 46.0; SuppressXByY(ps.hf[0], ps.hf[1], suppress, &ps.uhf[0]); // hf is the SuppressXByY output, uhf will be written below. ps.hf[0].Swap(ps.uhf[0]); for (int i = 0; i < 2; ++i) { // Divide hf into hf and uhf. for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_uhf = ps.uhf[i].Row(y); float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[i].Row(y); for (size_t x = 0; x < xsize; ++x) { row_uhf[x] = row_hf[x]; } } Blur(ps.hf[i], kSigmaUhf, params, blur_temp, &ps.hf[i]); static const double kRemoveHfRange = 1.5; static const double kAddHfRange = 0.132; static const double kRemoveUhfRange = 0.04; static const double kMaxclampHf = 28.4691806922; static const double kMaxclampUhf = 5.19175294647; static double kMulYHf = 2.155; static double kMulYUhf = 2.69313763794; if (i == 0) { for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_uhf = ps.uhf[0].Row(y); float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[0].Row(y); for (size_t x = 0; x < xsize; x += Lanes(d)) { auto hf = Load(d, row_hf + x); auto uhf = Load(d, row_uhf + x) - hf; hf = RemoveRangeAroundZero(d, kRemoveHfRange, hf); uhf = RemoveRangeAroundZero(d, kRemoveUhfRange, uhf); Store(hf, d, row_hf + x); Store(uhf, d, row_uhf + x); } } } else { for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_uhf = ps.uhf[1].Row(y); float* BUTTERAUGLI_RESTRICT row_hf = ps.hf[1].Row(y); for (size_t x = 0; x < xsize; x += Lanes(d)) { auto hf = Load(d, row_hf + x); hf = MaximumClamp(d, hf, kMaxclampHf); auto uhf = Load(d, row_uhf + x) - hf; uhf = MaximumClamp(d, uhf, kMaxclampUhf); uhf *= Set(d, kMulYUhf); Store(uhf, d, row_uhf + x); hf *= Set(d, kMulYHf); hf = AmplifyRangeAroundZero(d, kAddHfRange, hf); Store(hf, d, row_hf + x); } } } } // Modify range around zero code only concerns the high frequency // planes and only the X and Y channels. // Convert low freq xyb to vals space so that we can do a simple squared sum // diff on the low frequencies later. for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_x = ps.lf.PlaneRow(0, y); float* BUTTERAUGLI_RESTRICT row_y = ps.lf.PlaneRow(1, y); float* BUTTERAUGLI_RESTRICT row_b = ps.lf.PlaneRow(2, y); for (size_t x = 0; x < xsize; x += Lanes(d)) { auto valx = Undefined(d); auto valy = Undefined(d); auto valb = Undefined(d); XybLowFreqToVals(d, Load(d, row_x + x), Load(d, row_y + x), Load(d, row_b + x), &valx, &valy, &valb); Store(valx, d, row_x + x); Store(valy, d, row_y + x); Store(valb, d, row_b + x); } } } template Vec MaltaUnit(MaltaTagLF /*tag*/, const D df, const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) { const intptr_t xs3 = 3 * xs; const auto center = LoadU(df, d); // x grows, y constant const auto sum_yconst = LoadU(df, d - 4) + LoadU(df, d - 2) + center + LoadU(df, d + 2) + LoadU(df, d + 4); // Will return this, sum of all line kernels auto retval = sum_yconst * sum_yconst; { // y grows, x constant auto sum = LoadU(df, d - xs3 - xs) + LoadU(df, d - xs - xs) + center + LoadU(df, d + xs + xs) + LoadU(df, d + xs3 + xs); retval = MulAdd(sum, sum, retval); } { // both grow auto sum = LoadU(df, d - xs3 - 3) + LoadU(df, d - xs - xs - 2) + center + LoadU(df, d + xs + xs + 2) + LoadU(df, d + xs3 + 3); retval = MulAdd(sum, sum, retval); } { // y grows, x shrinks auto sum = LoadU(df, d - xs3 + 3) + LoadU(df, d - xs - xs + 2) + center + LoadU(df, d + xs + xs - 2) + LoadU(df, d + xs3 - 3); retval = MulAdd(sum, sum, retval); } { // y grows -4 to 4, x shrinks 1 -> -1 auto sum = LoadU(df, d - xs3 - xs + 1) + LoadU(df, d - xs - xs + 1) + center + LoadU(df, d + xs + xs - 1) + LoadU(df, d + xs3 + xs - 1); retval = MulAdd(sum, sum, retval); } { // y grows -4 to 4, x grows -1 -> 1 auto sum = LoadU(df, d - xs3 - xs - 1) + LoadU(df, d - xs - xs - 1) + center + LoadU(df, d + xs + xs + 1) + LoadU(df, d + xs3 + xs + 1); retval = MulAdd(sum, sum, retval); } { // x grows -4 to 4, y grows -1 to 1 auto sum = LoadU(df, d - 4 - xs) + LoadU(df, d - 2 - xs) + center + LoadU(df, d + 2 + xs) + LoadU(df, d + 4 + xs); retval = MulAdd(sum, sum, retval); } { // x grows -4 to 4, y shrinks 1 to -1 auto sum = LoadU(df, d - 4 + xs) + LoadU(df, d - 2 + xs) + center + LoadU(df, d + 2 - xs) + LoadU(df, d + 4 - xs); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1__*______ 2___*_____ 3_________ 4____0____ 5_________ 6_____*___ 7______*__ 8_________ */ auto sum = LoadU(df, d - xs3 - 2) + LoadU(df, d - xs - xs - 1) + center + LoadU(df, d + xs + xs + 1) + LoadU(df, d + xs3 + 2); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1______*__ 2_____*___ 3_________ 4____0____ 5_________ 6___*_____ 7__*______ 8_________ */ auto sum = LoadU(df, d - xs3 + 2) + LoadU(df, d - xs - xs + 1) + center + LoadU(df, d + xs + xs - 1) + LoadU(df, d + xs3 - 2); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2_*_______ 3__*______ 4____0____ 5______*__ 6_______*_ 7_________ 8_________ */ auto sum = LoadU(df, d - xs - xs - 3) + LoadU(df, d - xs - 2) + center + LoadU(df, d + xs + 2) + LoadU(df, d + xs + xs + 3); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2_______*_ 3______*__ 4____0____ 5__*______ 6_*_______ 7_________ 8_________ */ auto sum = LoadU(df, d - xs - xs + 3) + LoadU(df, d - xs + 2) + center + LoadU(df, d + xs - 2) + LoadU(df, d + xs + xs - 3); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2________* 3______*__ 4____0____ 5__*______ 6*________ 7_________ 8_________ */ auto sum = LoadU(df, d + xs + xs - 4) + LoadU(df, d + xs - 2) + center + LoadU(df, d - xs + 2) + LoadU(df, d - xs - xs + 4); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2*________ 3__*______ 4____0____ 5______*__ 6________* 7_________ 8_________ */ auto sum = LoadU(df, d - xs - xs - 4) + LoadU(df, d - xs - 2) + center + LoadU(df, d + xs + 2) + LoadU(df, d + xs + xs + 4); retval = MulAdd(sum, sum, retval); } { /* 0__*______ 1_________ 2___*_____ 3_________ 4____0____ 5_________ 6_____*___ 7_________ 8______*__ */ auto sum = LoadU(df, d - xs3 - xs - 2) + LoadU(df, d - xs - xs - 1) + center + LoadU(df, d + xs + xs + 1) + LoadU(df, d + xs3 + xs + 2); retval = MulAdd(sum, sum, retval); } { /* 0______*__ 1_________ 2_____*___ 3_________ 4____0____ 5_________ 6___*_____ 7_________ 8__*______ */ auto sum = LoadU(df, d - xs3 - xs + 2) + LoadU(df, d - xs - xs + 1) + center + LoadU(df, d + xs + xs - 1) + LoadU(df, d + xs3 + xs - 2); retval = MulAdd(sum, sum, retval); } return retval; } template Vec MaltaUnit(MaltaTag /*tag*/, const D df, const float* BUTTERAUGLI_RESTRICT d, const intptr_t xs) { const intptr_t xs3 = 3 * xs; const auto center = LoadU(df, d); // x grows, y constant const auto sum_yconst = LoadU(df, d - 4) + LoadU(df, d - 3) + LoadU(df, d - 2) + LoadU(df, d - 1) + center + LoadU(df, d + 1) + LoadU(df, d + 2) + LoadU(df, d + 3) + LoadU(df, d + 4); // Will return this, sum of all line kernels auto retval = sum_yconst * sum_yconst; { // y grows, x constant auto sum = LoadU(df, d - xs3 - xs) + LoadU(df, d - xs3) + LoadU(df, d - xs - xs) + LoadU(df, d - xs) + center + LoadU(df, d + xs) + LoadU(df, d + xs + xs) + LoadU(df, d + xs3) + LoadU(df, d + xs3 + xs); retval = MulAdd(sum, sum, retval); } { // both grow auto sum = LoadU(df, d - xs3 - 3) + LoadU(df, d - xs - xs - 2) + LoadU(df, d - xs - 1) + center + LoadU(df, d + xs + 1) + LoadU(df, d + xs + xs + 2) + LoadU(df, d + xs3 + 3); retval = MulAdd(sum, sum, retval); } { // y grows, x shrinks auto sum = LoadU(df, d - xs3 + 3) + LoadU(df, d - xs - xs + 2) + LoadU(df, d - xs + 1) + center + LoadU(df, d + xs - 1) + LoadU(df, d + xs + xs - 2) + LoadU(df, d + xs3 - 3); retval = MulAdd(sum, sum, retval); } { // y grows -4 to 4, x shrinks 1 -> -1 auto sum = LoadU(df, d - xs3 - xs + 1) + LoadU(df, d - xs3 + 1) + LoadU(df, d - xs - xs + 1) + LoadU(df, d - xs) + center + LoadU(df, d + xs) + LoadU(df, d + xs + xs - 1) + LoadU(df, d + xs3 - 1) + LoadU(df, d + xs3 + xs - 1); retval = MulAdd(sum, sum, retval); } { // y grows -4 to 4, x grows -1 -> 1 auto sum = LoadU(df, d - xs3 - xs - 1) + LoadU(df, d - xs3 - 1) + LoadU(df, d - xs - xs - 1) + LoadU(df, d - xs) + center + LoadU(df, d + xs) + LoadU(df, d + xs + xs + 1) + LoadU(df, d + xs3 + 1) + LoadU(df, d + xs3 + xs + 1); retval = MulAdd(sum, sum, retval); } { // x grows -4 to 4, y grows -1 to 1 auto sum = LoadU(df, d - 4 - xs) + LoadU(df, d - 3 - xs) + LoadU(df, d - 2 - xs) + LoadU(df, d - 1) + center + LoadU(df, d + 1) + LoadU(df, d + 2 + xs) + LoadU(df, d + 3 + xs) + LoadU(df, d + 4 + xs); retval = MulAdd(sum, sum, retval); } { // x grows -4 to 4, y shrinks 1 to -1 auto sum = LoadU(df, d - 4 + xs) + LoadU(df, d - 3 + xs) + LoadU(df, d - 2 + xs) + LoadU(df, d - 1) + center + LoadU(df, d + 1) + LoadU(df, d + 2 - xs) + LoadU(df, d + 3 - xs) + LoadU(df, d + 4 - xs); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1__*______ 2___*_____ 3___*_____ 4____0____ 5_____*___ 6_____*___ 7______*__ 8_________ */ auto sum = LoadU(df, d - xs3 - 2) + LoadU(df, d - xs - xs - 1) + LoadU(df, d - xs - 1) + center + LoadU(df, d + xs + 1) + LoadU(df, d + xs + xs + 1) + LoadU(df, d + xs3 + 2); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1______*__ 2_____*___ 3_____*___ 4____0____ 5___*_____ 6___*_____ 7__*______ 8_________ */ auto sum = LoadU(df, d - xs3 + 2) + LoadU(df, d - xs - xs + 1) + LoadU(df, d - xs + 1) + center + LoadU(df, d + xs - 1) + LoadU(df, d + xs + xs - 1) + LoadU(df, d + xs3 - 2); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2_*_______ 3__**_____ 4____0____ 5_____**__ 6_______*_ 7_________ 8_________ */ auto sum = LoadU(df, d - xs - xs - 3) + LoadU(df, d - xs - 2) + LoadU(df, d - xs - 1) + center + LoadU(df, d + xs + 1) + LoadU(df, d + xs + 2) + LoadU(df, d + xs + xs + 3); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2_______*_ 3_____**__ 4____0____ 5__**_____ 6_*_______ 7_________ 8_________ */ auto sum = LoadU(df, d - xs - xs + 3) + LoadU(df, d - xs + 2) + LoadU(df, d - xs + 1) + center + LoadU(df, d + xs - 1) + LoadU(df, d + xs - 2) + LoadU(df, d + xs + xs - 3); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2_________ 3______*** 4___*0*___ 5***______ 6_________ 7_________ 8_________ */ auto sum = LoadU(df, d + xs - 4) + LoadU(df, d + xs - 3) + LoadU(df, d + xs - 2) + LoadU(df, d - 1) + center + LoadU(df, d + 1) + LoadU(df, d - xs + 2) + LoadU(df, d - xs + 3) + LoadU(df, d - xs + 4); retval = MulAdd(sum, sum, retval); } { /* 0_________ 1_________ 2_________ 3***______ 4___*0*___ 5______*** 6_________ 7_________ 8_________ */ auto sum = LoadU(df, d - xs - 4) + LoadU(df, d - xs - 3) + LoadU(df, d - xs - 2) + LoadU(df, d - 1) + center + LoadU(df, d + 1) + LoadU(df, d + xs + 2) + LoadU(df, d + xs + 3) + LoadU(df, d + xs + 4); retval = MulAdd(sum, sum, retval); } { /* 0___*_____ 1___*_____ 2___*_____ 3____*____ 4____0____ 5____*____ 6_____*___ 7_____*___ 8_____*___ */ auto sum = LoadU(df, d - xs3 - xs - 1) + LoadU(df, d - xs3 - 1) + LoadU(df, d - xs - xs - 1) + LoadU(df, d - xs) + center + LoadU(df, d + xs) + LoadU(df, d + xs + xs + 1) + LoadU(df, d + xs3 + 1) + LoadU(df, d + xs3 + xs + 1); retval = MulAdd(sum, sum, retval); } { /* 0_____*___ 1_____*___ 2____ *___ 3____*____ 4____0____ 5____*____ 6___*_____ 7___*_____ 8___*_____ */ auto sum = LoadU(df, d - xs3 - xs + 1) + LoadU(df, d - xs3 + 1) + LoadU(df, d - xs - xs + 1) + LoadU(df, d - xs) + center + LoadU(df, d + xs) + LoadU(df, d + xs + xs - 1) + LoadU(df, d + xs3 - 1) + LoadU(df, d + xs3 + xs - 1); retval = MulAdd(sum, sum, retval); } return retval; } // Returns MaltaUnit. Avoids bounds-checks when x0 and y0 are known // to be far enough from the image borders. "diffs" is a packed image. template static BUTTERAUGLI_INLINE float PaddedMaltaUnit(const ImageF& diffs, const size_t x0, const size_t y0) { const float* BUTTERAUGLI_RESTRICT d = diffs.ConstRow(y0) + x0; const HWY_CAPPED(float, 1) df; if ((x0 >= 4 && y0 >= 4 && x0 < (diffs.xsize() - 4) && y0 < (diffs.ysize() - 4))) { return GetLane(MaltaUnit(Tag(), df, d, diffs.PixelsPerRow())); } PROFILER_ZONE("Padded Malta"); float borderimage[12 * 9]; // round up to 4 for (int dy = 0; dy < 9; ++dy) { int y = y0 + dy - 4; if (y < 0 || static_cast(y) >= diffs.ysize()) { for (int dx = 0; dx < 12; ++dx) { borderimage[dy * 12 + dx] = 0.0f; } continue; } const float* row_diffs = diffs.ConstRow(y); for (int dx = 0; dx < 9; ++dx) { int x = x0 + dx - 4; if (x < 0 || static_cast(x) >= diffs.xsize()) { borderimage[dy * 12 + dx] = 0.0f; } else { borderimage[dy * 12 + dx] = row_diffs[x]; } } std::fill(borderimage + dy * 12 + 9, borderimage + dy * 12 + 12, 0.0f); } return GetLane(MaltaUnit(Tag(), df, &borderimage[4 * 12 + 4], 12)); } template static void MaltaDiffMapT(const Tag tag, const ImageF& lum0, const ImageF& lum1, const double w_0gt1, const double w_0lt1, const double norm1, const double len, const double mulli, ImageF* HWY_RESTRICT diffs, Image3F* HWY_RESTRICT block_diff_ac, size_t c) { JXL_DASSERT(SameSize(lum0, lum1) && SameSize(lum0, *diffs)); const size_t xsize_ = lum0.xsize(); const size_t ysize_ = lum0.ysize(); const float kWeight0 = 0.5; const float kWeight1 = 0.33; const double w_pre0gt1 = mulli * std::sqrt(kWeight0 * w_0gt1) / (len * 2 + 1); const double w_pre0lt1 = mulli * std::sqrt(kWeight1 * w_0lt1) / (len * 2 + 1); const float norm2_0gt1 = w_pre0gt1 * norm1; const float norm2_0lt1 = w_pre0lt1 * norm1; for (size_t y = 0; y < ysize_; ++y) { const float* HWY_RESTRICT row0 = lum0.ConstRow(y); const float* HWY_RESTRICT row1 = lum1.ConstRow(y); float* HWY_RESTRICT row_diffs = diffs->Row(y); for (size_t x = 0; x < xsize_; ++x) { const float absval = 0.5f * (std::abs(row0[x]) + std::abs(row1[x])); const float diff = row0[x] - row1[x]; const float scaler = norm2_0gt1 / (static_cast(norm1) + absval); // Primary symmetric quadratic objective. row_diffs[x] = scaler * diff; const float scaler2 = norm2_0lt1 / (static_cast(norm1) + absval); const double fabs0 = std::fabs(row0[x]); // Secondary half-open quadratic objectives. const double too_small = 0.55 * fabs0; const double too_big = 1.05 * fabs0; if (row0[x] < 0) { if (row1[x] > -too_small) { double impact = scaler2 * (row1[x] + too_small); row_diffs[x] -= impact; } else if (row1[x] < -too_big) { double impact = scaler2 * (-row1[x] - too_big); row_diffs[x] += impact; } } else { if (row1[x] < too_small) { double impact = scaler2 * (too_small - row1[x]); row_diffs[x] += impact; } else if (row1[x] > too_big) { double impact = scaler2 * (row1[x] - too_big); row_diffs[x] -= impact; } } } } size_t y0 = 0; // Top for (; y0 < 4; ++y0) { float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->PlaneRow(c, y0); for (size_t x0 = 0; x0 < xsize_; ++x0) { row_diff[x0] += PaddedMaltaUnit(*diffs, x0, y0); } } const HWY_FULL(float) df; const size_t aligned_x = std::max(size_t(4), Lanes(df)); const intptr_t stride = diffs->PixelsPerRow(); // Middle for (; y0 < ysize_ - 4; ++y0) { const float* BUTTERAUGLI_RESTRICT row_in = diffs->ConstRow(y0); float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->PlaneRow(c, y0); size_t x0 = 0; for (; x0 < aligned_x; ++x0) { row_diff[x0] += PaddedMaltaUnit(*diffs, x0, y0); } for (; x0 + Lanes(df) + 4 <= xsize_; x0 += Lanes(df)) { auto diff = Load(df, row_diff + x0); diff += MaltaUnit(Tag(), df, row_in + x0, stride); Store(diff, df, row_diff + x0); } for (; x0 < xsize_; ++x0) { row_diff[x0] += PaddedMaltaUnit(*diffs, x0, y0); } } // Bottom for (; y0 < ysize_; ++y0) { float* BUTTERAUGLI_RESTRICT row_diff = block_diff_ac->PlaneRow(c, y0); for (size_t x0 = 0; x0 < xsize_; ++x0) { row_diff[x0] += PaddedMaltaUnit(*diffs, x0, y0); } } } // Need non-template wrapper functions for HWY_EXPORT. void MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1, const double w_0lt1, const double norm1, const double len, const double mulli, ImageF* HWY_RESTRICT diffs, Image3F* HWY_RESTRICT block_diff_ac, size_t c) { MaltaDiffMapT(MaltaTag(), lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli, diffs, block_diff_ac, c); } void MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1, const double w_0gt1, const double w_0lt1, const double norm1, const double len, const double mulli, ImageF* HWY_RESTRICT diffs, Image3F* HWY_RESTRICT block_diff_ac, size_t c) { MaltaDiffMapT(MaltaTagLF(), lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli, diffs, block_diff_ac, c); } void DiffPrecompute(const ImageF& xyb, float mul, float bias_arg, ImageF* out) { PROFILER_FUNC; const size_t xsize = xyb.xsize(); const size_t ysize = xyb.ysize(); const float bias = mul * bias_arg; const float sqrt_bias = sqrt(bias); for (size_t y = 0; y < ysize; ++y) { const float* BUTTERAUGLI_RESTRICT row_in = xyb.Row(y); float* BUTTERAUGLI_RESTRICT row_out = out->Row(y); for (size_t x = 0; x < xsize; ++x) { // kBias makes sqrt behave more linearly. row_out[x] = sqrt(mul * std::abs(row_in[x]) + bias) - sqrt_bias; } } } // std::log(80.0) / std::log(255.0); constexpr float kIntensityTargetNormalizationHack = 0.79079917404f; static const float kInternalGoodQualityThreshold = 17.8f * kIntensityTargetNormalizationHack; static const float kGlobalScale = 1.0 / kInternalGoodQualityThreshold; void StoreMin3(const float v, float& min0, float& min1, float& min2) { if (v < min2) { if (v < min0) { min2 = min1; min1 = min0; min0 = v; } else if (v < min1) { min2 = min1; min1 = v; } else { min2 = v; } } } // Look for smooth areas near the area of degradation. // If the areas area generally smooth, don't do masking. void FuzzyErosion(const ImageF& from, ImageF* to) { const size_t xsize = from.xsize(); const size_t ysize = from.ysize(); static const int kStep = 3; for (size_t y = 0; y < ysize; ++y) { for (size_t x = 0; x < xsize; ++x) { float min0 = from.Row(y)[x]; float min1 = 2 * min0; float min2 = min1; if (x >= kStep) { float v = from.Row(y)[x - kStep]; StoreMin3(v, min0, min1, min2); if (y >= kStep) { float v = from.Row(y - kStep)[x - kStep]; StoreMin3(v, min0, min1, min2); } if (y < ysize - kStep) { float v = from.Row(y + kStep)[x - kStep]; StoreMin3(v, min0, min1, min2); } } if (x < xsize - kStep) { float v = from.Row(y)[x + kStep]; StoreMin3(v, min0, min1, min2); if (y >= kStep) { float v = from.Row(y - kStep)[x + kStep]; StoreMin3(v, min0, min1, min2); } if (y < ysize - kStep) { float v = from.Row(y + kStep)[x + kStep]; StoreMin3(v, min0, min1, min2); } } if (y >= kStep) { float v = from.Row(y - kStep)[x]; StoreMin3(v, min0, min1, min2); } if (y < ysize - kStep) { float v = from.Row(y + kStep)[x]; StoreMin3(v, min0, min1, min2); } to->Row(y)[x] = (0.45f * min0 + 0.3f * min1 + 0.25f * min2); } } } // Compute values of local frequency and dc masking based on the activity // in the two images. img_diff_ac may be null. void Mask(const ImageF& mask0, const ImageF& mask1, const ButteraugliParams& params, BlurTemp* blur_temp, ImageF* BUTTERAUGLI_RESTRICT mask, ImageF* BUTTERAUGLI_RESTRICT diff_ac) { // Only X and Y components are involved in masking. B's influence // is considered less important in the high frequency area, and we // don't model masking from lower frequency signals. PROFILER_FUNC; const size_t xsize = mask0.xsize(); const size_t ysize = mask0.ysize(); *mask = ImageF(xsize, ysize); static const float kMul = 6.19424080439; static const float kBias = 12.61050594197; static const float kRadius = 2.7; ImageF diff0(xsize, ysize); ImageF diff1(xsize, ysize); ImageF blurred0(xsize, ysize); ImageF blurred1(xsize, ysize); DiffPrecompute(mask0, kMul, kBias, &diff0); DiffPrecompute(mask1, kMul, kBias, &diff1); Blur(diff0, kRadius, params, blur_temp, &blurred0); FuzzyErosion(blurred0, &diff0); Blur(diff1, kRadius, params, blur_temp, &blurred1); FuzzyErosion(blurred1, &diff1); for (size_t y = 0; y < ysize; ++y) { for (size_t x = 0; x < xsize; ++x) { mask->Row(y)[x] = diff0.Row(y)[x]; if (diff_ac != nullptr) { static const float kMaskToErrorMul = 10.0; float diff = blurred0.Row(y)[x] - blurred1.Row(y)[x]; diff_ac->Row(y)[x] += kMaskToErrorMul * diff * diff; } } } } // `diff_ac` may be null. void MaskPsychoImage(const PsychoImage& pi0, const PsychoImage& pi1, const size_t xsize, const size_t ysize, const ButteraugliParams& params, Image3F* temp, BlurTemp* blur_temp, ImageF* BUTTERAUGLI_RESTRICT mask, ImageF* BUTTERAUGLI_RESTRICT diff_ac) { ImageF mask0(xsize, ysize); ImageF mask1(xsize, ysize); static const float muls[3] = { 2.5f, 0.4f, 0.4f, }; // Silly and unoptimized approach here. TODO(jyrki): rework this. for (size_t y = 0; y < ysize; ++y) { const float* BUTTERAUGLI_RESTRICT row_y_hf0 = pi0.hf[1].Row(y); const float* BUTTERAUGLI_RESTRICT row_y_hf1 = pi1.hf[1].Row(y); const float* BUTTERAUGLI_RESTRICT row_y_uhf0 = pi0.uhf[1].Row(y); const float* BUTTERAUGLI_RESTRICT row_y_uhf1 = pi1.uhf[1].Row(y); const float* BUTTERAUGLI_RESTRICT row_x_hf0 = pi0.hf[0].Row(y); const float* BUTTERAUGLI_RESTRICT row_x_hf1 = pi1.hf[0].Row(y); const float* BUTTERAUGLI_RESTRICT row_x_uhf0 = pi0.uhf[0].Row(y); const float* BUTTERAUGLI_RESTRICT row_x_uhf1 = pi1.uhf[0].Row(y); float* BUTTERAUGLI_RESTRICT row0 = mask0.Row(y); float* BUTTERAUGLI_RESTRICT row1 = mask1.Row(y); for (size_t x = 0; x < xsize; ++x) { float xdiff0 = (row_x_uhf0[x] + row_x_hf0[x]) * muls[0]; float xdiff1 = (row_x_uhf1[x] + row_x_hf1[x]) * muls[0]; float ydiff0 = row_y_uhf0[x] * muls[1] + row_y_hf0[x] * muls[2]; float ydiff1 = row_y_uhf1[x] * muls[1] + row_y_hf1[x] * muls[2]; row0[x] = xdiff0 * xdiff0 + ydiff0 * ydiff0; row0[x] = sqrt(row0[x]); row1[x] = xdiff1 * xdiff1 + ydiff1 * ydiff1; row1[x] = sqrt(row1[x]); } } Mask(mask0, mask1, params, blur_temp, mask, diff_ac); } double MaskY(double delta) { static const double offset = 0.829591754942; static const double scaler = 0.451936922203; static const double mul = 2.5485944793; const double c = mul / ((scaler * delta) + offset); const double retval = kGlobalScale * (1.0 + c); return retval * retval; } double MaskDcY(double delta) { static const double offset = 0.20025578522; static const double scaler = 3.87449418804; static const double mul = 0.505054525019; const double c = mul / ((scaler * delta) + offset); const double retval = kGlobalScale * (1.0 + c); return retval * retval; } inline float MaskColor(const float color[3], const float mask) { return color[0] * mask + color[1] * mask + color[2] * mask; } // Diffmap := sqrt of sum{diff images by multiplied by X and Y/B masks} void CombineChannelsToDiffmap(const ImageF& mask, const Image3F& block_diff_dc, const Image3F& block_diff_ac, float xmul, ImageF* result) { PROFILER_FUNC; JXL_CHECK(SameSize(mask, *result)); size_t xsize = mask.xsize(); size_t ysize = mask.ysize(); for (size_t y = 0; y < ysize; ++y) { float* BUTTERAUGLI_RESTRICT row_out = result->Row(y); for (size_t x = 0; x < xsize; ++x) { float val = mask.Row(y)[x]; float maskval = MaskY(val); float dc_maskval = MaskDcY(val); float diff_dc[3]; float diff_ac[3]; for (int i = 0; i < 3; ++i) { diff_dc[i] = block_diff_dc.PlaneRow(i, y)[x]; diff_ac[i] = block_diff_ac.PlaneRow(i, y)[x]; } diff_ac[0] *= xmul; diff_dc[0] *= xmul; row_out[x] = sqrt(MaskColor(diff_dc, dc_maskval) + MaskColor(diff_ac, maskval)); } } } // Adds weighted L2 difference between i0 and i1 to diffmap. static void L2Diff(const ImageF& i0, const ImageF& i1, const float w, Image3F* BUTTERAUGLI_RESTRICT diffmap, size_t c) { if (w == 0) return; const HWY_FULL(float) d; const auto weight = Set(d, w); for (size_t y = 0; y < i0.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y); const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y); float* BUTTERAUGLI_RESTRICT row_diff = diffmap->PlaneRow(c, y); for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) { const auto diff = Load(d, row0 + x) - Load(d, row1 + x); const auto diff2 = diff * diff; const auto prev = Load(d, row_diff + x); Store(MulAdd(diff2, weight, prev), d, row_diff + x); } } } // Initializes diffmap to the weighted L2 difference between i0 and i1. static void SetL2Diff(const ImageF& i0, const ImageF& i1, const float w, Image3F* BUTTERAUGLI_RESTRICT diffmap, size_t c) { if (w == 0) return; const HWY_FULL(float) d; const auto weight = Set(d, w); for (size_t y = 0; y < i0.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row0 = i0.ConstRow(y); const float* BUTTERAUGLI_RESTRICT row1 = i1.ConstRow(y); float* BUTTERAUGLI_RESTRICT row_diff = diffmap->PlaneRow(c, y); for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) { const auto diff = Load(d, row0 + x) - Load(d, row1 + x); const auto diff2 = diff * diff; Store(diff2 * weight, d, row_diff + x); } } } // i0 is the original image. // i1 is the deformed copy. static void L2DiffAsymmetric(const ImageF& i0, const ImageF& i1, float w_0gt1, float w_0lt1, Image3F* BUTTERAUGLI_RESTRICT diffmap, size_t c) { if (w_0gt1 == 0 && w_0lt1 == 0) { return; } const HWY_FULL(float) d; const auto vw_0gt1 = Set(d, w_0gt1 * 0.8); const auto vw_0lt1 = Set(d, w_0lt1 * 0.8); for (size_t y = 0; y < i0.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row0 = i0.Row(y); const float* BUTTERAUGLI_RESTRICT row1 = i1.Row(y); float* BUTTERAUGLI_RESTRICT row_diff = diffmap->PlaneRow(c, y); for (size_t x = 0; x < i0.xsize(); x += Lanes(d)) { const auto val0 = Load(d, row0 + x); const auto val1 = Load(d, row1 + x); // Primary symmetric quadratic objective. const auto diff = val0 - val1; auto total = MulAdd(diff * diff, vw_0gt1, Load(d, row_diff + x)); // Secondary half-open quadratic objectives. const auto fabs0 = Abs(val0); const auto too_small = Set(d, 0.4) * fabs0; const auto too_big = fabs0; const auto if_neg = IfThenElse(val1 > Neg(too_small), val1 + too_small, IfThenElseZero(val1 < Neg(too_big), Neg(val1) - too_big)); const auto if_pos = IfThenElse(val1 < too_small, too_small - val1, IfThenElseZero(val1 > too_big, val1 - too_big)); const auto v = IfThenElse(val0 < Zero(d), if_neg, if_pos); total += vw_0lt1 * v * v; Store(total, d, row_diff + x); } } } // A simple HDR compatible gamma function. template V Gamma(const DF df, V v) { // ln(2) constant folded in because we want std::log but have FastLog2f. const auto kRetMul = Set(df, 19.245013259874995f * 0.693147180559945f); const auto kRetAdd = Set(df, -23.16046239805755); // This should happen rarely, but may lead to a NaN in log, which is // undesirable. Since negative photons don't exist we solve the NaNs by // clamping here. v = ZeroIfNegative(v); const auto biased = v + Set(df, 9.9710635769299145); const auto log = FastLog2f(df, biased); // We could fold this into a custom Log2 polynomial, but there would be // relatively little gain. return MulAdd(kRetMul, log, kRetAdd); } template BUTTERAUGLI_INLINE void OpsinAbsorbance(const DF df, const V& in0, const V& in1, const V& in2, V* JXL_RESTRICT out0, V* JXL_RESTRICT out1, V* JXL_RESTRICT out2) { // https://en.wikipedia.org/wiki/Photopsin absorbance modeling. static const double mixi0 = 0.29956550340058319; static const double mixi1 = 0.63373087833825936; static const double mixi2 = 0.077705617820981968; static const double mixi3 = 1.7557483643287353; static const double mixi4 = 0.22158691104574774; static const double mixi5 = 0.69391388044116142; static const double mixi6 = 0.0987313588422; static const double mixi7 = 1.7557483643287353; static const double mixi8 = 0.02; static const double mixi9 = 0.02; static const double mixi10 = 0.20480129041026129; static const double mixi11 = 12.226454707163354; const V mix0 = Set(df, mixi0); const V mix1 = Set(df, mixi1); const V mix2 = Set(df, mixi2); const V mix3 = Set(df, mixi3); const V mix4 = Set(df, mixi4); const V mix5 = Set(df, mixi5); const V mix6 = Set(df, mixi6); const V mix7 = Set(df, mixi7); const V mix8 = Set(df, mixi8); const V mix9 = Set(df, mixi9); const V mix10 = Set(df, mixi10); const V mix11 = Set(df, mixi11); *out0 = mix0 * in0 + mix1 * in1 + mix2 * in2 + mix3; *out1 = mix4 * in0 + mix5 * in1 + mix6 * in2 + mix7; *out2 = mix8 * in0 + mix9 * in1 + mix10 * in2 + mix11; if (Clamp) { *out0 = Max(*out0, mix3); *out1 = Max(*out1, mix7); *out2 = Max(*out2, mix11); } } // `blurred` is a temporary image used inside this function and not returned. Image3F OpsinDynamicsImage(const Image3F& rgb, const ButteraugliParams& params, Image3F* blurred, BlurTemp* blur_temp) { PROFILER_FUNC; Image3F xyb(rgb.xsize(), rgb.ysize()); const double kSigma = 1.2; Blur(rgb.Plane(0), kSigma, params, blur_temp, &blurred->Plane(0)); Blur(rgb.Plane(1), kSigma, params, blur_temp, &blurred->Plane(1)); Blur(rgb.Plane(2), kSigma, params, blur_temp, &blurred->Plane(2)); const HWY_FULL(float) df; const auto intensity_target_multiplier = Set(df, params.intensity_target); for (size_t y = 0; y < rgb.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_r = rgb.ConstPlaneRow(0, y); const float* BUTTERAUGLI_RESTRICT row_g = rgb.ConstPlaneRow(1, y); const float* BUTTERAUGLI_RESTRICT row_b = rgb.ConstPlaneRow(2, y); const float* BUTTERAUGLI_RESTRICT row_blurred_r = blurred->ConstPlaneRow(0, y); const float* BUTTERAUGLI_RESTRICT row_blurred_g = blurred->ConstPlaneRow(1, y); const float* BUTTERAUGLI_RESTRICT row_blurred_b = blurred->ConstPlaneRow(2, y); float* BUTTERAUGLI_RESTRICT row_out_x = xyb.PlaneRow(0, y); float* BUTTERAUGLI_RESTRICT row_out_y = xyb.PlaneRow(1, y); float* BUTTERAUGLI_RESTRICT row_out_b = xyb.PlaneRow(2, y); const auto min = Set(df, 1e-4f); for (size_t x = 0; x < rgb.xsize(); x += Lanes(df)) { auto sensitivity0 = Undefined(df); auto sensitivity1 = Undefined(df); auto sensitivity2 = Undefined(df); { // Calculate sensitivity based on the smoothed image gamma derivative. auto pre_mixed0 = Undefined(df); auto pre_mixed1 = Undefined(df); auto pre_mixed2 = Undefined(df); OpsinAbsorbance( df, Load(df, row_blurred_r + x) * intensity_target_multiplier, Load(df, row_blurred_g + x) * intensity_target_multiplier, Load(df, row_blurred_b + x) * intensity_target_multiplier, &pre_mixed0, &pre_mixed1, &pre_mixed2); pre_mixed0 = Max(pre_mixed0, min); pre_mixed1 = Max(pre_mixed1, min); pre_mixed2 = Max(pre_mixed2, min); sensitivity0 = Gamma(df, pre_mixed0) / pre_mixed0; sensitivity1 = Gamma(df, pre_mixed1) / pre_mixed1; sensitivity2 = Gamma(df, pre_mixed2) / pre_mixed2; sensitivity0 = Max(sensitivity0, min); sensitivity1 = Max(sensitivity1, min); sensitivity2 = Max(sensitivity2, min); } auto cur_mixed0 = Undefined(df); auto cur_mixed1 = Undefined(df); auto cur_mixed2 = Undefined(df); OpsinAbsorbance(df, Load(df, row_r + x) * intensity_target_multiplier, Load(df, row_g + x) * intensity_target_multiplier, Load(df, row_b + x) * intensity_target_multiplier, &cur_mixed0, &cur_mixed1, &cur_mixed2); cur_mixed0 *= sensitivity0; cur_mixed1 *= sensitivity1; cur_mixed2 *= sensitivity2; // This is a kludge. The negative values should be zeroed away before // blurring. Ideally there would be no negative values in the first place. const auto min01 = Set(df, 1.7557483643287353f); const auto min2 = Set(df, 12.226454707163354f); cur_mixed0 = Max(cur_mixed0, min01); cur_mixed1 = Max(cur_mixed1, min01); cur_mixed2 = Max(cur_mixed2, min2); Store(cur_mixed0 - cur_mixed1, df, row_out_x + x); Store(cur_mixed0 + cur_mixed1, df, row_out_y + x); Store(cur_mixed2, df, row_out_b + x); } } return xyb; } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(SeparateFrequencies); // Local function. HWY_EXPORT(MaskPsychoImage); // Local function. HWY_EXPORT(L2DiffAsymmetric); // Local function. HWY_EXPORT(L2Diff); // Local function. HWY_EXPORT(SetL2Diff); // Local function. HWY_EXPORT(CombineChannelsToDiffmap); // Local function. HWY_EXPORT(MaltaDiffMap); // Local function. HWY_EXPORT(MaltaDiffMapLF); // Local function. HWY_EXPORT(OpsinDynamicsImage); // Local function. #if BUTTERAUGLI_ENABLE_CHECKS static inline bool IsNan(const float x) { uint32_t bits; memcpy(&bits, &x, sizeof(bits)); const uint32_t bitmask_exp = 0x7F800000; return (bits & bitmask_exp) == bitmask_exp && (bits & 0x7FFFFF); } static inline bool IsNan(const double x) { uint64_t bits; memcpy(&bits, &x, sizeof(bits)); return (0x7ff0000000000001ULL <= bits && bits <= 0x7fffffffffffffffULL) || (0xfff0000000000001ULL <= bits && bits <= 0xffffffffffffffffULL); } static inline void CheckImage(const ImageF& image, const char* name) { PROFILER_FUNC; for (size_t y = 0; y < image.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row = image.Row(y); for (size_t x = 0; x < image.xsize(); ++x) { if (IsNan(row[x])) { printf("NAN: Image %s @ %" PRIuS ",%" PRIuS " (of %" PRIuS ",%" PRIuS ")\n", name, x, y, image.xsize(), image.ysize()); exit(1); } } } } #define CHECK_NAN(x, str) \ do { \ if (IsNan(x)) { \ printf("%d: %s\n", __LINE__, str); \ abort(); \ } \ } while (0) #define CHECK_IMAGE(image, name) CheckImage(image, name) #else // BUTTERAUGLI_ENABLE_CHECKS #define CHECK_NAN(x, str) #define CHECK_IMAGE(image, name) #endif // BUTTERAUGLI_ENABLE_CHECKS // Calculate a 2x2 subsampled image for purposes of recursive butteraugli at // multiresolution. static Image3F SubSample2x(const Image3F& in) { size_t xs = (in.xsize() + 1) / 2; size_t ys = (in.ysize() + 1) / 2; Image3F retval(xs, ys); for (size_t c = 0; c < 3; ++c) { for (size_t y = 0; y < ys; ++y) { for (size_t x = 0; x < xs; ++x) { retval.PlaneRow(c, y)[x] = 0; } } } for (size_t c = 0; c < 3; ++c) { for (size_t y = 0; y < in.ysize(); ++y) { for (size_t x = 0; x < in.xsize(); ++x) { retval.PlaneRow(c, y / 2)[x / 2] += 0.25f * in.PlaneRow(c, y)[x]; } } if ((in.xsize() & 1) != 0) { for (size_t y = 0; y < retval.ysize(); ++y) { size_t last_column = retval.xsize() - 1; retval.PlaneRow(c, y)[last_column] *= 2.0f; } } if ((in.ysize() & 1) != 0) { for (size_t x = 0; x < retval.xsize(); ++x) { size_t last_row = retval.ysize() - 1; retval.PlaneRow(c, last_row)[x] *= 2.0f; } } } return retval; } // Supersample src by 2x and add it to dest. static void AddSupersampled2x(const ImageF& src, float w, ImageF& dest) { for (size_t y = 0; y < dest.ysize(); ++y) { for (size_t x = 0; x < dest.xsize(); ++x) { // There will be less errors from the more averaged images. // We take it into account to some extent using a scaler. static const double kHeuristicMixingValue = 0.3; dest.Row(y)[x] *= 1.0 - kHeuristicMixingValue * w; dest.Row(y)[x] += w * src.Row(y / 2)[x / 2]; } } } Image3F* ButteraugliComparator::Temp() const { bool was_in_use = temp_in_use_.test_and_set(std::memory_order_acq_rel); JXL_ASSERT(!was_in_use); (void)was_in_use; return &temp_; } void ButteraugliComparator::ReleaseTemp() const { temp_in_use_.clear(); } ButteraugliComparator::ButteraugliComparator(const Image3F& rgb0, const ButteraugliParams& params) : xsize_(rgb0.xsize()), ysize_(rgb0.ysize()), params_(params), temp_(xsize_, ysize_) { if (xsize_ < 8 || ysize_ < 8) { return; } Image3F xyb0 = HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)(rgb0, params, Temp(), &blur_temp_); ReleaseTemp(); HWY_DYNAMIC_DISPATCH(SeparateFrequencies) (xsize_, ysize_, params_, &blur_temp_, xyb0, pi0_); // Awful recursive construction of samples of different resolution. // This is an after-thought and possibly somewhat parallel in // functionality with the PsychoImage multi-resolution approach. sub_.reset(new ButteraugliComparator(SubSample2x(rgb0), params)); } void ButteraugliComparator::Mask(ImageF* BUTTERAUGLI_RESTRICT mask) const { HWY_DYNAMIC_DISPATCH(MaskPsychoImage) (pi0_, pi0_, xsize_, ysize_, params_, Temp(), &blur_temp_, mask, nullptr); ReleaseTemp(); } void ButteraugliComparator::Diffmap(const Image3F& rgb1, ImageF& result) const { PROFILER_FUNC; if (xsize_ < 8 || ysize_ < 8) { ZeroFillImage(&result); return; } const Image3F xyb1 = HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)( rgb1, params_, Temp(), &blur_temp_); ReleaseTemp(); DiffmapOpsinDynamicsImage(xyb1, result); if (sub_) { if (sub_->xsize_ < 8 || sub_->ysize_ < 8) { return; } const Image3F sub_xyb = HWY_DYNAMIC_DISPATCH(OpsinDynamicsImage)( SubSample2x(rgb1), params_, sub_->Temp(), &sub_->blur_temp_); sub_->ReleaseTemp(); ImageF subresult; sub_->DiffmapOpsinDynamicsImage(sub_xyb, subresult); AddSupersampled2x(subresult, 0.5, result); } } void ButteraugliComparator::DiffmapOpsinDynamicsImage(const Image3F& xyb1, ImageF& result) const { PROFILER_FUNC; if (xsize_ < 8 || ysize_ < 8) { ZeroFillImage(&result); return; } PsychoImage pi1; HWY_DYNAMIC_DISPATCH(SeparateFrequencies) (xsize_, ysize_, params_, &blur_temp_, xyb1, pi1); result = ImageF(xsize_, ysize_); DiffmapPsychoImage(pi1, result); } namespace { void MaltaDiffMap(const ImageF& lum0, const ImageF& lum1, const double w_0gt1, const double w_0lt1, const double norm1, ImageF* HWY_RESTRICT diffs, Image3F* HWY_RESTRICT block_diff_ac, size_t c) { PROFILER_FUNC; const double len = 3.75; static const double mulli = 0.39905817637; HWY_DYNAMIC_DISPATCH(MaltaDiffMap) (lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli, diffs, block_diff_ac, c); } void MaltaDiffMapLF(const ImageF& lum0, const ImageF& lum1, const double w_0gt1, const double w_0lt1, const double norm1, ImageF* HWY_RESTRICT diffs, Image3F* HWY_RESTRICT block_diff_ac, size_t c) { PROFILER_FUNC; const double len = 3.75; static const double mulli = 0.611612573796; HWY_DYNAMIC_DISPATCH(MaltaDiffMapLF) (lum0, lum1, w_0gt1, w_0lt1, norm1, len, mulli, diffs, block_diff_ac, c); } } // namespace void ButteraugliComparator::DiffmapPsychoImage(const PsychoImage& pi1, ImageF& diffmap) const { PROFILER_FUNC; if (xsize_ < 8 || ysize_ < 8) { ZeroFillImage(&diffmap); return; } const float hf_asymmetry_ = params_.hf_asymmetry; const float xmul_ = params_.xmul; ImageF diffs(xsize_, ysize_); Image3F block_diff_ac(xsize_, ysize_); ZeroFillImage(&block_diff_ac); static const double wUhfMalta = 1.10039032555; static const double norm1Uhf = 71.7800275169; MaltaDiffMap(pi0_.uhf[1], pi1.uhf[1], wUhfMalta * hf_asymmetry_, wUhfMalta / hf_asymmetry_, norm1Uhf, &diffs, &block_diff_ac, 1); static const double wUhfMaltaX = 173.5; static const double norm1UhfX = 5.0; MaltaDiffMap(pi0_.uhf[0], pi1.uhf[0], wUhfMaltaX * hf_asymmetry_, wUhfMaltaX / hf_asymmetry_, norm1UhfX, &diffs, &block_diff_ac, 0); static const double wHfMalta = 18.7237414387; static const double norm1Hf = 4498534.45232; MaltaDiffMapLF(pi0_.hf[1], pi1.hf[1], wHfMalta * std::sqrt(hf_asymmetry_), wHfMalta / std::sqrt(hf_asymmetry_), norm1Hf, &diffs, &block_diff_ac, 1); static const double wHfMaltaX = 6923.99476109; static const double norm1HfX = 8051.15833247; MaltaDiffMapLF(pi0_.hf[0], pi1.hf[0], wHfMaltaX * std::sqrt(hf_asymmetry_), wHfMaltaX / std::sqrt(hf_asymmetry_), norm1HfX, &diffs, &block_diff_ac, 0); static const double wMfMalta = 37.0819870399; static const double norm1Mf = 130262059.556; MaltaDiffMapLF(pi0_.mf.Plane(1), pi1.mf.Plane(1), wMfMalta, wMfMalta, norm1Mf, &diffs, &block_diff_ac, 1); static const double wMfMaltaX = 8246.75321353; static const double norm1MfX = 1009002.70582; MaltaDiffMapLF(pi0_.mf.Plane(0), pi1.mf.Plane(0), wMfMaltaX, wMfMaltaX, norm1MfX, &diffs, &block_diff_ac, 0); static const double wmul[9] = { 400.0, 1.50815703118, 0, 2150.0, 10.6195433239, 16.2176043152, 29.2353797994, 0.844626970982, 0.703646627719, }; Image3F block_diff_dc(xsize_, ysize_); for (size_t c = 0; c < 3; ++c) { if (c < 2) { // No blue channel error accumulated at HF. HWY_DYNAMIC_DISPATCH(L2DiffAsymmetric) (pi0_.hf[c], pi1.hf[c], wmul[c] * hf_asymmetry_, wmul[c] / hf_asymmetry_, &block_diff_ac, c); } HWY_DYNAMIC_DISPATCH(L2Diff) (pi0_.mf.Plane(c), pi1.mf.Plane(c), wmul[3 + c], &block_diff_ac, c); HWY_DYNAMIC_DISPATCH(SetL2Diff) (pi0_.lf.Plane(c), pi1.lf.Plane(c), wmul[6 + c], &block_diff_dc, c); } ImageF mask; HWY_DYNAMIC_DISPATCH(MaskPsychoImage) (pi0_, pi1, xsize_, ysize_, params_, Temp(), &blur_temp_, &mask, &block_diff_ac.Plane(1)); ReleaseTemp(); HWY_DYNAMIC_DISPATCH(CombineChannelsToDiffmap) (mask, block_diff_dc, block_diff_ac, xmul_, &diffmap); } double ButteraugliScoreFromDiffmap(const ImageF& diffmap, const ButteraugliParams* params) { PROFILER_FUNC; float retval = 0.0f; for (size_t y = 0; y < diffmap.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row = diffmap.ConstRow(y); for (size_t x = 0; x < diffmap.xsize(); ++x) { retval = std::max(retval, row[x]); } } return retval; } bool ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1, double hf_asymmetry, double xmul, ImageF& diffmap) { ButteraugliParams params; params.hf_asymmetry = hf_asymmetry; params.xmul = xmul; return ButteraugliDiffmap(rgb0, rgb1, params, diffmap); } bool ButteraugliDiffmap(const Image3F& rgb0, const Image3F& rgb1, const ButteraugliParams& params, ImageF& diffmap) { PROFILER_FUNC; const size_t xsize = rgb0.xsize(); const size_t ysize = rgb0.ysize(); if (xsize < 1 || ysize < 1) { return JXL_FAILURE("Zero-sized image"); } if (!SameSize(rgb0, rgb1)) { return JXL_FAILURE("Size mismatch"); } static const int kMax = 8; if (xsize < kMax || ysize < kMax) { // Butteraugli values for small (where xsize or ysize is smaller // than 8 pixels) images are non-sensical, but most likely it is // less disruptive to try to compute something than just give up. // Temporarily extend the borders of the image to fit 8 x 8 size. size_t xborder = xsize < kMax ? (kMax - xsize) / 2 : 0; size_t yborder = ysize < kMax ? (kMax - ysize) / 2 : 0; size_t xscaled = std::max(kMax, xsize); size_t yscaled = std::max(kMax, ysize); Image3F scaled0(xscaled, yscaled); Image3F scaled1(xscaled, yscaled); for (int i = 0; i < 3; ++i) { for (size_t y = 0; y < yscaled; ++y) { for (size_t x = 0; x < xscaled; ++x) { size_t x2 = std::min(xsize - 1, x > xborder ? x - xborder : 0); size_t y2 = std::min(ysize - 1, y > yborder ? y - yborder : 0); scaled0.PlaneRow(i, y)[x] = rgb0.PlaneRow(i, y2)[x2]; scaled1.PlaneRow(i, y)[x] = rgb1.PlaneRow(i, y2)[x2]; } } } ImageF diffmap_scaled; const bool ok = ButteraugliDiffmap(scaled0, scaled1, params, diffmap_scaled); diffmap = ImageF(xsize, ysize); for (size_t y = 0; y < ysize; ++y) { for (size_t x = 0; x < xsize; ++x) { diffmap.Row(y)[x] = diffmap_scaled.Row(y + yborder)[x + xborder]; } } return ok; } ButteraugliComparator butteraugli(rgb0, params); butteraugli.Diffmap(rgb1, diffmap); return true; } bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1, float hf_asymmetry, float xmul, ImageF& diffmap, double& diffvalue) { ButteraugliParams params; params.hf_asymmetry = hf_asymmetry; params.xmul = xmul; return ButteraugliInterface(rgb0, rgb1, params, diffmap, diffvalue); } bool ButteraugliInterface(const Image3F& rgb0, const Image3F& rgb1, const ButteraugliParams& params, ImageF& diffmap, double& diffvalue) { #if PROFILER_ENABLED auto trace_start = std::chrono::steady_clock::now(); #endif if (!ButteraugliDiffmap(rgb0, rgb1, params, diffmap)) { return false; } #if PROFILER_ENABLED auto trace_end = std::chrono::steady_clock::now(); std::chrono::duration elapsed = trace_end - trace_start; const size_t mp = rgb0.xsize() * rgb0.ysize(); printf("diff MP/s %f\n", mp / elapsed.count() * 1E-6); #endif diffvalue = ButteraugliScoreFromDiffmap(diffmap, ¶ms); return true; } double ButteraugliFuzzyClass(double score) { static const double fuzzy_width_up = 4.8; static const double fuzzy_width_down = 4.8; static const double m0 = 2.0; static const double scaler = 0.7777; double val; if (score < 1.0) { // val in [scaler .. 2.0] val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_down)); val -= 1.0; // from [1 .. 2] to [0 .. 1] val *= 2.0 - scaler; // from [0 .. 1] to [0 .. 2.0 - scaler] val += scaler; // from [0 .. 2.0 - scaler] to [scaler .. 2.0] } else { // val in [0 .. scaler] val = m0 / (1.0 + exp((score - 1.0) * fuzzy_width_up)); val *= scaler; } return val; } // #define PRINT_OUT_NORMALIZATION double ButteraugliFuzzyInverse(double seek) { double pos = 0; // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter) for (double range = 1.0; range >= 1e-10; range *= 0.5) { double cur = ButteraugliFuzzyClass(pos); if (cur < seek) { pos -= range; } else { pos += range; } } #ifdef PRINT_OUT_NORMALIZATION if (seek == 1.0) { fprintf(stderr, "Fuzzy inverse %g\n", pos); } #endif return pos; } #ifdef PRINT_OUT_NORMALIZATION static double print_out_normalization = ButteraugliFuzzyInverse(1.0); #endif namespace { void ScoreToRgb(double score, double good_threshold, double bad_threshold, float rgb[3]) { double heatmap[12][3] = { {0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {0, 1, 0}, // Good level {1, 1, 0}, {1, 0, 0}, // Bad level {1, 0, 1}, {0.5, 0.5, 1.0}, {1.0, 0.5, 0.5}, // Pastel colors for the very bad quality range. {1.0, 1.0, 0.5}, {1, 1, 1}, {1, 1, 1}, // Last color repeated to have a solid range of white. }; if (score < good_threshold) { score = (score / good_threshold) * 0.3; } else if (score < bad_threshold) { score = 0.3 + (score - good_threshold) / (bad_threshold - good_threshold) * 0.15; } else { score = 0.45 + (score - bad_threshold) / (bad_threshold * 12) * 0.5; } static const int kTableSize = sizeof(heatmap) / sizeof(heatmap[0]); score = std::min(std::max(score * (kTableSize - 1), 0.0), kTableSize - 2); int ix = static_cast(score); ix = std::min(std::max(0, ix), kTableSize - 2); // Handle NaN double mix = score - ix; for (int i = 0; i < 3; ++i) { double v = mix * heatmap[ix + 1][i] + (1 - mix) * heatmap[ix][i]; rgb[i] = pow(v, 0.5); } } } // namespace Image3F CreateHeatMapImage(const ImageF& distmap, double good_threshold, double bad_threshold) { Image3F heatmap(distmap.xsize(), distmap.ysize()); for (size_t y = 0; y < distmap.ysize(); ++y) { const float* BUTTERAUGLI_RESTRICT row_distmap = distmap.ConstRow(y); float* BUTTERAUGLI_RESTRICT row_h0 = heatmap.PlaneRow(0, y); float* BUTTERAUGLI_RESTRICT row_h1 = heatmap.PlaneRow(1, y); float* BUTTERAUGLI_RESTRICT row_h2 = heatmap.PlaneRow(2, y); for (size_t x = 0; x < distmap.xsize(); ++x) { const float d = row_distmap[x]; float rgb[3]; ScoreToRgb(d, good_threshold, bad_threshold, rgb); row_h0[x] = rgb[0]; row_h1[x] = rgb[1]; row_h2[x] = rgb[2]; } } return heatmap; } } // namespace jxl #endif // HWY_ONCE