// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/convolve.h" #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/convolve.cc" #include #include #include "lib/jxl/common.h" // RoundUpTo #include "lib/jxl/convolve-inl.h" #include "lib/jxl/image_ops.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Vec; // Weighted sum of 1x5 pixels around ix, iy with [wx2 wx1 wx0 wx1 wx2]. template static float WeightedSumBorder(const ImageF& in, const WrapY wrap_y, const int64_t ix, const int64_t iy, const size_t xsize, const size_t ysize, const float wx0, const float wx1, const float wx2) { const WrapMirror wrap_x; const float* JXL_RESTRICT row = in.ConstRow(wrap_y(iy, ysize)); const float in_m2 = row[wrap_x(ix - 2, xsize)]; const float in_p2 = row[wrap_x(ix + 2, xsize)]; const float in_m1 = row[wrap_x(ix - 1, xsize)]; const float in_p1 = row[wrap_x(ix + 1, xsize)]; const float in_00 = row[ix]; const float sum_2 = wx2 * (in_m2 + in_p2); const float sum_1 = wx1 * (in_m1 + in_p1); const float sum_0 = wx0 * in_00; return sum_2 + sum_1 + sum_0; } template static V WeightedSum(const ImageF& in, const WrapY wrap_y, const size_t ix, const int64_t iy, const size_t ysize, const V wx0, const V wx1, const V wx2) { const HWY_FULL(float) d; const float* JXL_RESTRICT center = in.ConstRow(wrap_y(iy, ysize)) + ix; const auto in_m2 = LoadU(d, center - 2); const auto in_p2 = LoadU(d, center + 2); const auto in_m1 = LoadU(d, center - 1); const auto in_p1 = LoadU(d, center + 1); const auto in_00 = Load(d, center); const auto sum_2 = wx2 * (in_m2 + in_p2); const auto sum_1 = wx1 * (in_m1 + in_p1); const auto sum_0 = wx0 * in_00; return sum_2 + sum_1 + sum_0; } // Produces result for one pixel template float Symmetric5Border(const ImageF& in, const Rect& rect, const int64_t ix, const int64_t iy, const WeightsSymmetric5& weights) { const float w0 = weights.c[0]; const float w1 = weights.r[0]; const float w2 = weights.R[0]; const float w4 = weights.d[0]; const float w5 = weights.L[0]; const float w8 = weights.D[0]; const size_t xsize = rect.xsize(); const size_t ysize = rect.ysize(); const WrapY wrap_y; // Unrolled loop over all 5 rows of the kernel. float sum0 = WeightedSumBorder(in, wrap_y, ix, iy, xsize, ysize, w0, w1, w2); sum0 += WeightedSumBorder(in, wrap_y, ix, iy - 2, xsize, ysize, w2, w5, w8); float sum1 = WeightedSumBorder(in, wrap_y, ix, iy + 2, xsize, ysize, w2, w5, w8); sum0 += WeightedSumBorder(in, wrap_y, ix, iy - 1, xsize, ysize, w1, w4, w5); sum1 += WeightedSumBorder(in, wrap_y, ix, iy + 1, xsize, ysize, w1, w4, w5); return sum0 + sum1; } // Produces result for one vector's worth of pixels template static void Symmetric5Interior(const ImageF& in, const Rect& rect, const int64_t ix, const int64_t iy, const WeightsSymmetric5& weights, float* JXL_RESTRICT row_out) { const HWY_FULL(float) d; const auto w0 = LoadDup128(d, weights.c); const auto w1 = LoadDup128(d, weights.r); const auto w2 = LoadDup128(d, weights.R); const auto w4 = LoadDup128(d, weights.d); const auto w5 = LoadDup128(d, weights.L); const auto w8 = LoadDup128(d, weights.D); const size_t ysize = rect.ysize(); const WrapY wrap_y; // Unrolled loop over all 5 rows of the kernel. auto sum0 = WeightedSum(in, wrap_y, ix, iy, ysize, w0, w1, w2); sum0 += WeightedSum(in, wrap_y, ix, iy - 2, ysize, w2, w5, w8); auto sum1 = WeightedSum(in, wrap_y, ix, iy + 2, ysize, w2, w5, w8); sum0 += WeightedSum(in, wrap_y, ix, iy - 1, ysize, w1, w4, w5); sum1 += WeightedSum(in, wrap_y, ix, iy + 1, ysize, w1, w4, w5); Store(sum0 + sum1, d, row_out + ix); } template static void Symmetric5Row(const ImageF& in, const Rect& rect, const int64_t iy, const WeightsSymmetric5& weights, float* JXL_RESTRICT row_out) { const int64_t kRadius = 2; const size_t xsize = rect.xsize(); size_t ix = 0; const HWY_FULL(float) d; const size_t N = Lanes(d); const size_t aligned_x = RoundUpTo(kRadius, N); for (; ix < std::min(aligned_x, xsize); ++ix) { row_out[ix] = Symmetric5Border(in, rect, ix, iy, weights); } for (; ix + N + kRadius <= xsize; ix += N) { Symmetric5Interior(in, rect, ix, iy, weights, row_out); } for (; ix < xsize; ++ix) { row_out[ix] = Symmetric5Border(in, rect, ix, iy, weights); } } static JXL_NOINLINE void Symmetric5BorderRow(const ImageF& in, const Rect& rect, const int64_t iy, const WeightsSymmetric5& weights, float* JXL_RESTRICT row_out) { return Symmetric5Row(in, rect, iy, weights, row_out); } #if HWY_TARGET != HWY_SCALAR // Returns indices for SetTableIndices such that TableLookupLanes on the // rightmost unaligned vector (rightmost sample in its most-significant lane) // returns the mirrored values, with the mirror outside the last valid sample. static inline const int32_t* MirrorLanes(const size_t mod) { const HWY_CAPPED(float, 16) d; constexpr size_t kN = MaxLanes(d); // For mod = `image width mod 16` 0..15: // last full vec mirrored (mem order) loadedVec mirrorVec idxVec // 0123456789abcdef| fedcba9876543210 fed..210 012..def 012..def // 0123456789abcdef|0 0fedcba98765432 0fe..321 234..f00 123..eff // 0123456789abcdef|01 10fedcba987654 10f..432 456..110 234..ffe // 0123456789abcdef|012 210fedcba9876 210..543 67..2210 34..ffed // 0123456789abcdef|0123 3210fedcba98 321..654 8..33210 4..ffedc // 0123456789abcdef|01234 43210fedcba // 0123456789abcdef|012345 543210fedc // 0123456789abcdef|0123456 6543210fe // 0123456789abcdef|01234567 76543210 // 0123456789abcdef|012345678 8765432 // 0123456789abcdef|0123456789 987654 // 0123456789abcdef|0123456789A A9876 // 0123456789abcdef|0123456789AB BA98 // 0123456789abcdef|0123456789ABC CBA // 0123456789abcdef|0123456789ABCD DC // 0123456789abcdef|0123456789ABCDE E EDC..10f EED..210 ffe..321 #if HWY_CAP_GE512 HWY_ALIGN static constexpr int32_t idx_lanes[2 * kN - 1] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, // 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; #elif HWY_CAP_GE256 HWY_ALIGN static constexpr int32_t idx_lanes[2 * kN - 1] = { 1, 2, 3, 4, 5, 6, 7, 7, // 6, 5, 4, 3, 2, 1, 0}; #else // 128-bit HWY_ALIGN static constexpr int32_t idx_lanes[2 * kN - 1] = {1, 2, 3, 3, // 2, 1, 0}; #endif return idx_lanes + kN - 1 - mod; } #endif // HWY_TARGET != HWY_SCALAR namespace strategy { struct StrategyBase { using D = HWY_CAPPED(float, 16); using V = Vec; }; // 3x3 convolution by symmetric kernel with a single scan through the input. class Symmetric3 : public StrategyBase { public: static constexpr int64_t kRadius = 1; // Only accesses pixels in [0, xsize). template static JXL_INLINE void ConvolveRow(const float* const JXL_RESTRICT row_m, const size_t xsize, const int64_t stride, const WrapRow& wrap_row, const WeightsSymmetric3& weights, float* const JXL_RESTRICT row_out) { const D d; // t, m, b = top, middle, bottom row; const float* const JXL_RESTRICT row_t = wrap_row(row_m - stride, stride); const float* const JXL_RESTRICT row_b = wrap_row(row_m + stride, stride); // Must load in advance - compiler doesn't understand LoadDup128 and // schedules them too late. const V w0 = LoadDup128(d, weights.c); const V w1 = LoadDup128(d, weights.r); const V w2 = LoadDup128(d, weights.d); // l, c, r = left, center, right. Leftmost vector: need FirstL1. { const V tc = LoadU(d, row_t + 0); const V mc = LoadU(d, row_m + 0); const V bc = LoadU(d, row_b + 0); const V tl = Neighbors::FirstL1(tc); const V tr = LoadU(d, row_t + 0 + 1); const V ml = Neighbors::FirstL1(mc); const V mr = LoadU(d, row_m + 0 + 1); const V bl = Neighbors::FirstL1(bc); const V br = LoadU(d, row_b + 0 + 1); const V conv = WeightedSum(tl, tc, tr, ml, mc, mr, bl, bc, br, w0, w1, w2); Store(conv, d, row_out + 0); } // Loop as long as we can load enough new values: const size_t N = Lanes(d); size_t x = N; for (; x + N + kRadius <= xsize; x += N) { const auto conv = ConvolveValid(row_t, row_m, row_b, x, w0, w1, w2); Store(conv, d, row_out + x); } // For final (partial) vector: const V tc = LoadU(d, row_t + x); const V mc = LoadU(d, row_m + x); const V bc = LoadU(d, row_b + x); V tr, mr, br; #if HWY_TARGET == HWY_SCALAR tr = tc; // Single-lane => mirrored right neighbor = center value. mr = mc; br = bc; #else if (kSizeModN == 0) { // The above loop didn't handle the last vector because it needs an // additional right neighbor (generated via mirroring). auto mirror = SetTableIndices(d, MirrorLanes(N - 1)); tr = TableLookupLanes(tc, mirror); mr = TableLookupLanes(mc, mirror); br = TableLookupLanes(bc, mirror); } else { auto mirror = SetTableIndices(d, MirrorLanes((xsize % N) - 1)); // Loads last valid value into uppermost lane and mirrors. tr = TableLookupLanes(LoadU(d, row_t + xsize - N), mirror); mr = TableLookupLanes(LoadU(d, row_m + xsize - N), mirror); br = TableLookupLanes(LoadU(d, row_b + xsize - N), mirror); } #endif const V tl = LoadU(d, row_t + x - 1); const V ml = LoadU(d, row_m + x - 1); const V bl = LoadU(d, row_b + x - 1); const V conv = WeightedSum(tl, tc, tr, ml, mc, mr, bl, bc, br, w0, w1, w2); Store(conv, d, row_out + x); } private: // Returns sum{x_i * w_i}. template static JXL_INLINE V WeightedSum(const V tl, const V tc, const V tr, const V ml, const V mc, const V mr, const V bl, const V bc, const V br, const V w0, const V w1, const V w2) { const V sum_tb = tc + bc; // Faster than 5 mul + 4 FMA. const V mul0 = mc * w0; const V sum_lr = ml + mr; const V x1 = sum_tb + sum_lr; const V mul1 = MulAdd(x1, w1, mul0); const V sum_t2 = tl + tr; const V sum_b2 = bl + br; const V x2 = sum_t2 + sum_b2; const V mul2 = MulAdd(x2, w2, mul1); return mul2; } static JXL_INLINE V ConvolveValid(const float* JXL_RESTRICT row_t, const float* JXL_RESTRICT row_m, const float* JXL_RESTRICT row_b, const int64_t x, const V w0, const V w1, const V w2) { const D d; const V tc = LoadU(d, row_t + x); const V mc = LoadU(d, row_m + x); const V bc = LoadU(d, row_b + x); const V tl = LoadU(d, row_t + x - 1); const V tr = LoadU(d, row_t + x + 1); const V ml = LoadU(d, row_m + x - 1); const V mr = LoadU(d, row_m + x + 1); const V bl = LoadU(d, row_b + x - 1); const V br = LoadU(d, row_b + x + 1); return WeightedSum(tl, tc, tr, ml, mc, mr, bl, bc, br, w0, w1, w2); } }; // 5x5 convolution by separable kernel with a single scan through the input. // This is more cache-efficient than separate horizontal/vertical passes, and // possibly faster (given enough registers) than tiling and/or transposing. // // Overview: imagine a 5x5 window around a central pixel. First convolve the // rows by multiplying the pixels with the corresponding weights from // WeightsSeparable5.horz[abs(x_offset) * 4]. Then multiply each of these // intermediate results by the corresponding vertical weight, i.e. // vert[abs(y_offset) * 4]. Finally, store the sum of these values as the // convolution result at the position of the central pixel in the output. // // Each of these operations uses SIMD vectors. The central pixel and most // importantly the output are aligned, so neighnoring pixels (e.g. x_offset=1) // require unaligned loads. Because weights are supplied in identical groups of // 4, we can use LoadDup128 to load them (slightly faster). // // Uses mirrored boundary handling. Until x >= kRadius, the horizontal // convolution uses Neighbors class to shuffle vectors as if each of its lanes // had been loaded from the mirrored offset. Similarly, the last full vector to // write uses mirroring. In the case of scalar vectors, Neighbors is not usable // and the value is loaded directly. Otherwise, the number of valid pixels // modulo the vector size enables a small optimization: for smaller offsets, // a non-mirrored load is sufficient. class Separable5 : public StrategyBase { public: static constexpr int64_t kRadius = 2; template static JXL_INLINE void ConvolveRow(const float* const JXL_RESTRICT row_m, const size_t xsize, const int64_t stride, const WrapRow& wrap_row, const WeightsSeparable5& weights, float* const JXL_RESTRICT row_out) { const D d; const int64_t neg_stride = -stride; // allows LEA addressing. const float* const JXL_RESTRICT row_t2 = wrap_row(row_m + 2 * neg_stride, stride); const float* const JXL_RESTRICT row_t1 = wrap_row(row_m + 1 * neg_stride, stride); const float* const JXL_RESTRICT row_b1 = wrap_row(row_m + 1 * stride, stride); const float* const JXL_RESTRICT row_b2 = wrap_row(row_m + 2 * stride, stride); const V wh0 = LoadDup128(d, weights.horz + 0 * 4); const V wh1 = LoadDup128(d, weights.horz + 1 * 4); const V wh2 = LoadDup128(d, weights.horz + 2 * 4); const V wv0 = LoadDup128(d, weights.vert + 0 * 4); const V wv1 = LoadDup128(d, weights.vert + 1 * 4); const V wv2 = LoadDup128(d, weights.vert + 2 * 4); size_t x = 0; // More than one iteration for scalars. for (; x < kRadius; x += Lanes(d)) { const V conv0 = HorzConvolveFirst(row_m, x, xsize, wh0, wh1, wh2) * wv0; const V conv1t = HorzConvolveFirst(row_t1, x, xsize, wh0, wh1, wh2); const V conv1b = HorzConvolveFirst(row_b1, x, xsize, wh0, wh1, wh2); const V conv1 = MulAdd(conv1t + conv1b, wv1, conv0); const V conv2t = HorzConvolveFirst(row_t2, x, xsize, wh0, wh1, wh2); const V conv2b = HorzConvolveFirst(row_b2, x, xsize, wh0, wh1, wh2); const V conv2 = MulAdd(conv2t + conv2b, wv2, conv1); Store(conv2, d, row_out + x); } // Main loop: load inputs without padding for (; x + Lanes(d) + kRadius <= xsize; x += Lanes(d)) { const V conv0 = HorzConvolve(row_m + x, wh0, wh1, wh2) * wv0; const V conv1t = HorzConvolve(row_t1 + x, wh0, wh1, wh2); const V conv1b = HorzConvolve(row_b1 + x, wh0, wh1, wh2); const V conv1 = MulAdd(conv1t + conv1b, wv1, conv0); const V conv2t = HorzConvolve(row_t2 + x, wh0, wh1, wh2); const V conv2b = HorzConvolve(row_b2 + x, wh0, wh1, wh2); const V conv2 = MulAdd(conv2t + conv2b, wv2, conv1); Store(conv2, d, row_out + x); } // Last full vector to write (the above loop handled mod >= kRadius) #if HWY_TARGET == HWY_SCALAR while (x < xsize) { #else if (kSizeModN < kRadius) { #endif const V conv0 = HorzConvolveLast(row_m, x, xsize, wh0, wh1, wh2) * wv0; const V conv1t = HorzConvolveLast(row_t1, x, xsize, wh0, wh1, wh2); const V conv1b = HorzConvolveLast(row_b1, x, xsize, wh0, wh1, wh2); const V conv1 = MulAdd(conv1t + conv1b, wv1, conv0); const V conv2t = HorzConvolveLast(row_t2, x, xsize, wh0, wh1, wh2); const V conv2b = HorzConvolveLast(row_b2, x, xsize, wh0, wh1, wh2); const V conv2 = MulAdd(conv2t + conv2b, wv2, conv1); Store(conv2, d, row_out + x); x += Lanes(d); } // If mod = 0, the above vector was the last. if (kSizeModN != 0) { for (; x < xsize; ++x) { float mul = 0.0f; for (int64_t dy = -kRadius; dy <= kRadius; ++dy) { const float wy = weights.vert[std::abs(dy) * 4]; const float* clamped_row = wrap_row(row_m + dy * stride, stride); for (int64_t dx = -kRadius; dx <= kRadius; ++dx) { const float wx = weights.horz[std::abs(dx) * 4]; const int64_t clamped_x = Mirror(x + dx, xsize); mul += clamped_row[clamped_x] * wx * wy; } } row_out[x] = mul; } } } private: // Same as HorzConvolve for the first/last vector in a row. static JXL_INLINE V HorzConvolveFirst(const float* const JXL_RESTRICT row, const int64_t x, const int64_t xsize, const V wh0, const V wh1, const V wh2) { const D d; const V c = LoadU(d, row + x); const V mul0 = c * wh0; #if HWY_TARGET == HWY_SCALAR const V l1 = LoadU(d, row + Mirror(x - 1, xsize)); const V l2 = LoadU(d, row + Mirror(x - 2, xsize)); #else (void)xsize; const V l1 = Neighbors::FirstL1(c); const V l2 = Neighbors::FirstL2(c); #endif const V r1 = LoadU(d, row + x + 1); const V r2 = LoadU(d, row + x + 2); const V mul1 = MulAdd(l1 + r1, wh1, mul0); const V mul2 = MulAdd(l2 + r2, wh2, mul1); return mul2; } template static JXL_INLINE V HorzConvolveLast(const float* const JXL_RESTRICT row, const int64_t x, const int64_t xsize, const V wh0, const V wh1, const V wh2) { const D d; const V c = LoadU(d, row + x); const V mul0 = c * wh0; const V l1 = LoadU(d, row + x - 1); const V l2 = LoadU(d, row + x - 2); V r1, r2; #if HWY_TARGET == HWY_SCALAR r1 = LoadU(d, row + Mirror(x + 1, xsize)); r2 = LoadU(d, row + Mirror(x + 2, xsize)); #else const size_t N = Lanes(d); if (kSizeModN == 0) { r2 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 2))); r1 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 1))); } else { // == 1 const auto last = LoadU(d, row + xsize - N); r2 = TableLookupLanes(last, SetTableIndices(d, MirrorLanes(N - 1))); r1 = last; } #endif // Sum of pixels with Manhattan distance i, multiplied by weights[i]. const V sum1 = l1 + r1; const V mul1 = MulAdd(sum1, wh1, mul0); const V sum2 = l2 + r2; const V mul2 = MulAdd(sum2, wh2, mul1); return mul2; } // Requires kRadius valid pixels before/after pos. static JXL_INLINE V HorzConvolve(const float* const JXL_RESTRICT pos, const V wh0, const V wh1, const V wh2) { const D d; const V c = LoadU(d, pos); const V mul0 = c * wh0; // Loading anew is faster than combining vectors. const V l1 = LoadU(d, pos - 1); const V r1 = LoadU(d, pos + 1); const V l2 = LoadU(d, pos - 2); const V r2 = LoadU(d, pos + 2); // Sum of pixels with Manhattan distance i, multiplied by weights[i]. const V sum1 = l1 + r1; const V mul1 = MulAdd(sum1, wh1, mul0); const V sum2 = l2 + r2; const V mul2 = MulAdd(sum2, wh2, mul1); return mul2; } }; // namespace strategy // 7x7 convolution by separable kernel with a single scan through the input. // Extended version of Separable5, see documentation there. class Separable7 : public StrategyBase { public: static constexpr int64_t kRadius = 3; template static JXL_INLINE void ConvolveRow(const float* const JXL_RESTRICT row_m, const size_t xsize, const int64_t stride, const WrapRow& wrap_row, const WeightsSeparable7& weights, float* const JXL_RESTRICT row_out) { const D d; const int64_t neg_stride = -stride; // allows LEA addressing. const float* const JXL_RESTRICT row_t3 = wrap_row(row_m + 3 * neg_stride, stride); const float* const JXL_RESTRICT row_t2 = wrap_row(row_m + 2 * neg_stride, stride); const float* const JXL_RESTRICT row_t1 = wrap_row(row_m + 1 * neg_stride, stride); const float* const JXL_RESTRICT row_b1 = wrap_row(row_m + 1 * stride, stride); const float* const JXL_RESTRICT row_b2 = wrap_row(row_m + 2 * stride, stride); const float* const JXL_RESTRICT row_b3 = wrap_row(row_m + 3 * stride, stride); const V wh0 = LoadDup128(d, weights.horz + 0 * 4); const V wh1 = LoadDup128(d, weights.horz + 1 * 4); const V wh2 = LoadDup128(d, weights.horz + 2 * 4); const V wh3 = LoadDup128(d, weights.horz + 3 * 4); const V wv0 = LoadDup128(d, weights.vert + 0 * 4); const V wv1 = LoadDup128(d, weights.vert + 1 * 4); const V wv2 = LoadDup128(d, weights.vert + 2 * 4); const V wv3 = LoadDup128(d, weights.vert + 3 * 4); size_t x = 0; // More than one iteration for scalars. for (; x < kRadius; x += Lanes(d)) { const V conv0 = HorzConvolveFirst(row_m, x, xsize, wh0, wh1, wh2, wh3) * wv0; const V conv1t = HorzConvolveFirst(row_t1, x, xsize, wh0, wh1, wh2, wh3); const V conv1b = HorzConvolveFirst(row_b1, x, xsize, wh0, wh1, wh2, wh3); const V conv1 = MulAdd(conv1t + conv1b, wv1, conv0); const V conv2t = HorzConvolveFirst(row_t2, x, xsize, wh0, wh1, wh2, wh3); const V conv2b = HorzConvolveFirst(row_b2, x, xsize, wh0, wh1, wh2, wh3); const V conv2 = MulAdd(conv2t + conv2b, wv2, conv1); const V conv3t = HorzConvolveFirst(row_t3, x, xsize, wh0, wh1, wh2, wh3); const V conv3b = HorzConvolveFirst(row_b3, x, xsize, wh0, wh1, wh2, wh3); const V conv3 = MulAdd(conv3t + conv3b, wv3, conv2); Store(conv3, d, row_out + x); } // Main loop: load inputs without padding for (; x + Lanes(d) + kRadius <= xsize; x += Lanes(d)) { const V conv0 = HorzConvolve(row_m + x, wh0, wh1, wh2, wh3) * wv0; const V conv1t = HorzConvolve(row_t1 + x, wh0, wh1, wh2, wh3); const V conv1b = HorzConvolve(row_b1 + x, wh0, wh1, wh2, wh3); const V conv1 = MulAdd(conv1t + conv1b, wv1, conv0); const V conv2t = HorzConvolve(row_t2 + x, wh0, wh1, wh2, wh3); const V conv2b = HorzConvolve(row_b2 + x, wh0, wh1, wh2, wh3); const V conv2 = MulAdd(conv2t + conv2b, wv2, conv1); const V conv3t = HorzConvolve(row_t3 + x, wh0, wh1, wh2, wh3); const V conv3b = HorzConvolve(row_b3 + x, wh0, wh1, wh2, wh3); const V conv3 = MulAdd(conv3t + conv3b, wv3, conv2); Store(conv3, d, row_out + x); } // Last full vector to write (the above loop handled mod >= kRadius) #if HWY_TARGET == HWY_SCALAR while (x < xsize) { #else if (kSizeModN < kRadius) { #endif const V conv0 = HorzConvolveLast(row_m, x, xsize, wh0, wh1, wh2, wh3) * wv0; const V conv1t = HorzConvolveLast(row_t1, x, xsize, wh0, wh1, wh2, wh3); const V conv1b = HorzConvolveLast(row_b1, x, xsize, wh0, wh1, wh2, wh3); const V conv1 = MulAdd(conv1t + conv1b, wv1, conv0); const V conv2t = HorzConvolveLast(row_t2, x, xsize, wh0, wh1, wh2, wh3); const V conv2b = HorzConvolveLast(row_b2, x, xsize, wh0, wh1, wh2, wh3); const V conv2 = MulAdd(conv2t + conv2b, wv2, conv1); const V conv3t = HorzConvolveLast(row_t3, x, xsize, wh0, wh1, wh2, wh3); const V conv3b = HorzConvolveLast(row_b3, x, xsize, wh0, wh1, wh2, wh3); const V conv3 = MulAdd(conv3t + conv3b, wv3, conv2); Store(conv3, d, row_out + x); x += Lanes(d); } // If mod = 0, the above vector was the last. if (kSizeModN != 0) { for (; x < xsize; ++x) { float mul = 0.0f; for (int64_t dy = -kRadius; dy <= kRadius; ++dy) { const float wy = weights.vert[std::abs(dy) * 4]; const float* clamped_row = wrap_row(row_m + dy * stride, stride); for (int64_t dx = -kRadius; dx <= kRadius; ++dx) { const float wx = weights.horz[std::abs(dx) * 4]; const int64_t clamped_x = Mirror(x + dx, xsize); mul += clamped_row[clamped_x] * wx * wy; } } row_out[x] = mul; } } } private: // Same as HorzConvolve for the first/last vector in a row. static JXL_INLINE V HorzConvolveFirst(const float* const JXL_RESTRICT row, const int64_t x, const int64_t xsize, const V wh0, const V wh1, const V wh2, const V wh3) { const D d; const V c = LoadU(d, row + x); const V mul0 = c * wh0; #if HWY_TARGET == HWY_SCALAR const V l1 = LoadU(d, row + Mirror(x - 1, xsize)); const V l2 = LoadU(d, row + Mirror(x - 2, xsize)); const V l3 = LoadU(d, row + Mirror(x - 3, xsize)); #else (void)xsize; const V l1 = Neighbors::FirstL1(c); const V l2 = Neighbors::FirstL2(c); const V l3 = Neighbors::FirstL3(c); #endif const V r1 = LoadU(d, row + x + 1); const V r2 = LoadU(d, row + x + 2); const V r3 = LoadU(d, row + x + 3); const V mul1 = MulAdd(l1 + r1, wh1, mul0); const V mul2 = MulAdd(l2 + r2, wh2, mul1); const V mul3 = MulAdd(l3 + r3, wh3, mul2); return mul3; } template static JXL_INLINE V HorzConvolveLast(const float* const JXL_RESTRICT row, const int64_t x, const int64_t xsize, const V wh0, const V wh1, const V wh2, const V wh3) { const D d; const V c = LoadU(d, row + x); const V mul0 = c * wh0; const V l1 = LoadU(d, row + x - 1); const V l2 = LoadU(d, row + x - 2); const V l3 = LoadU(d, row + x - 3); V r1, r2, r3; #if HWY_TARGET == HWY_SCALAR r1 = LoadU(d, row + Mirror(x + 1, xsize)); r2 = LoadU(d, row + Mirror(x + 2, xsize)); r3 = LoadU(d, row + Mirror(x + 3, xsize)); #else const size_t N = Lanes(d); if (kSizeModN == 0) { r3 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 3))); r2 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 2))); r1 = TableLookupLanes(c, SetTableIndices(d, MirrorLanes(N - 1))); } else if (kSizeModN == 1) { const auto last = LoadU(d, row + xsize - N); r3 = TableLookupLanes(last, SetTableIndices(d, MirrorLanes(N - 2))); r2 = TableLookupLanes(last, SetTableIndices(d, MirrorLanes(N - 1))); r1 = last; } else /* kSizeModN >= 2 */ { const auto last = LoadU(d, row + xsize - N); r3 = TableLookupLanes(last, SetTableIndices(d, MirrorLanes(N - 1))); r2 = last; r1 = LoadU(d, row + x + 1); } #endif // Sum of pixels with Manhattan distance i, multiplied by weights[i]. const V sum1 = l1 + r1; const V mul1 = MulAdd(sum1, wh1, mul0); const V sum2 = l2 + r2; const V mul2 = MulAdd(sum2, wh2, mul1); const V sum3 = l3 + r3; const V mul3 = MulAdd(sum3, wh3, mul2); return mul3; } // Returns one vector of horizontal convolution results; lane i is the result // for pixel pos + i. This is the fast path for interior pixels, i.e. kRadius // valid pixels before/after pos. static JXL_INLINE V HorzConvolve(const float* const JXL_RESTRICT pos, const V wh0, const V wh1, const V wh2, const V wh3) { const D d; const V c = LoadU(d, pos); const V mul0 = c * wh0; // TODO(janwas): better to Combine const V l1 = LoadU(d, pos - 1); const V r1 = LoadU(d, pos + 1); const V l2 = LoadU(d, pos - 2); const V r2 = LoadU(d, pos + 2); const V l3 = LoadU(d, pos - 3); const V r3 = LoadU(d, pos + 3); // Sum of pixels with Manhattan distance i, multiplied by weights[i]. const V sum1 = l1 + r1; const V mul1 = MulAdd(sum1, wh1, mul0); const V sum2 = l2 + r2; const V mul2 = MulAdd(sum2, wh2, mul1); const V sum3 = l3 + r3; const V mul3 = MulAdd(sum3, wh3, mul2); return mul3; } }; // namespace HWY_NAMESPACE } // namespace strategy // Single entry point for convolution. // "Strategy" (Direct*/Separable*) decides kernel size and how to evaluate it. template class ConvolveT { static constexpr int64_t kRadius = Strategy::kRadius; using Simd = HWY_CAPPED(float, 16); public: static size_t MinWidth() { #if HWY_TARGET == HWY_SCALAR // First/Last use mirrored loads of up to +/- kRadius. return 2 * kRadius; #else return Lanes(Simd()) + kRadius; #endif } // "Image" is ImageF or Image3F. template static void Run(const Image& in, const Rect& rect, const Weights& weights, ThreadPool* pool, Image* out) { PROFILER_ZONE("ConvolveT::Run"); JXL_CHECK(SameSize(rect, *out)); JXL_CHECK(rect.xsize() >= MinWidth()); static_assert(int64_t(kRadius) <= 3, "Must handle [0, kRadius) and >= kRadius"); switch (rect.xsize() % Lanes(Simd())) { case 0: return RunRows<0>(in, rect, weights, pool, out); case 1: return RunRows<1>(in, rect, weights, pool, out); case 2: return RunRows<2>(in, rect, weights, pool, out); default: return RunRows<3>(in, rect, weights, pool, out); } } private: template static JXL_INLINE void RunRow(const float* JXL_RESTRICT in, const size_t xsize, const int64_t stride, const WrapRow& wrap_row, const Weights& weights, float* JXL_RESTRICT out) { Strategy::template ConvolveRow(in, xsize, stride, wrap_row, weights, out); } template static JXL_INLINE void RunBorderRows(const ImageF& in, const Rect& rect, const int64_t ybegin, const int64_t yend, const Weights& weights, ImageF* out) { const int64_t stride = in.PixelsPerRow(); const WrapRowMirror wrap_row(in, rect.ysize()); for (int64_t y = ybegin; y < yend; ++y) { RunRow(rect.ConstRow(in, y), rect.xsize(), stride, wrap_row, weights, out->Row(y)); } } // Image3F. template static JXL_INLINE void RunBorderRows(const Image3F& in, const Rect& rect, const int64_t ybegin, const int64_t yend, const Weights& weights, Image3F* out) { const int64_t stride = in.PixelsPerRow(); for (int64_t y = ybegin; y < yend; ++y) { for (size_t c = 0; c < 3; ++c) { const WrapRowMirror wrap_row(in.Plane(c), rect.ysize()); RunRow(rect.ConstPlaneRow(in, c, y), rect.xsize(), stride, wrap_row, weights, out->PlaneRow(c, y)); } } } template static JXL_INLINE void RunInteriorRows(const ImageF& in, const Rect& rect, const int64_t ybegin, const int64_t yend, const Weights& weights, ThreadPool* pool, ImageF* out) { const int64_t stride = in.PixelsPerRow(); JXL_CHECK(RunOnPool( pool, ybegin, yend, ThreadPool::NoInit, [&](const uint32_t y, size_t /*thread*/) HWY_ATTR { RunRow(rect.ConstRow(in, y), rect.xsize(), stride, WrapRowUnchanged(), weights, out->Row(y)); }, "Convolve")); } // Image3F. template static JXL_INLINE void RunInteriorRows(const Image3F& in, const Rect& rect, const int64_t ybegin, const int64_t yend, const Weights& weights, ThreadPool* pool, Image3F* out) { const int64_t stride = in.PixelsPerRow(); JXL_CHECK(RunOnPool( pool, ybegin, yend, ThreadPool::NoInit, [&](const uint32_t y, size_t /*thread*/) HWY_ATTR { for (size_t c = 0; c < 3; ++c) { RunRow(rect.ConstPlaneRow(in, c, y), rect.xsize(), stride, WrapRowUnchanged(), weights, out->PlaneRow(c, y)); } }, "Convolve3")); } template static JXL_INLINE void RunRows(const Image& in, const Rect& rect, const Weights& weights, ThreadPool* pool, Image* out) { const int64_t ysize = rect.ysize(); RunBorderRows(in, rect, 0, std::min(int64_t(kRadius), ysize), weights, out); if (ysize > 2 * int64_t(kRadius)) { RunInteriorRows(in, rect, int64_t(kRadius), ysize - int64_t(kRadius), weights, pool, out); } if (ysize > int64_t(kRadius)) { RunBorderRows(in, rect, ysize - int64_t(kRadius), ysize, weights, out); } } }; void Symmetric3(const ImageF& in, const Rect& rect, const WeightsSymmetric3& weights, ThreadPool* pool, ImageF* out) { using Conv = ConvolveT; if (rect.xsize() >= Conv::MinWidth()) { return Conv::Run(in, rect, weights, pool, out); } return SlowSymmetric3(in, rect, weights, pool, out); } // Symmetric5 is implemented above without ConvolveT. void Separable5(const ImageF& in, const Rect& rect, const WeightsSeparable5& weights, ThreadPool* pool, ImageF* out) { using Conv = ConvolveT; if (rect.xsize() >= Conv::MinWidth()) { return Conv::Run(in, rect, weights, pool, out); } return SlowSeparable5(in, rect, weights, pool, out); } void Separable5_3(const Image3F& in, const Rect& rect, const WeightsSeparable5& weights, ThreadPool* pool, Image3F* out) { using Conv = ConvolveT; if (rect.xsize() >= Conv::MinWidth()) { return Conv::Run(in, rect, weights, pool, out); } return SlowSeparable5(in, rect, weights, pool, out); } void Separable7(const ImageF& in, const Rect& rect, const WeightsSeparable7& weights, ThreadPool* pool, ImageF* out) { using Conv = ConvolveT; if (rect.xsize() >= Conv::MinWidth()) { return Conv::Run(in, rect, weights, pool, out); } return SlowSeparable7(in, rect, weights, pool, out); } void Separable7_3(const Image3F& in, const Rect& rect, const WeightsSeparable7& weights, ThreadPool* pool, Image3F* out) { using Conv = ConvolveT; if (rect.xsize() >= Conv::MinWidth()) { return Conv::Run(in, rect, weights, pool, out); } return SlowSeparable7(in, rect, weights, pool, out); } // Semi-vectorized (interior pixels Fonly); called directly like slow::, unlike // the fully vectorized strategies below. void Symmetric5(const ImageF& in, const Rect& rect, const WeightsSymmetric5& weights, ThreadPool* pool, ImageF* JXL_RESTRICT out) { PROFILER_FUNC; const size_t ysize = rect.ysize(); JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const int64_t iy = task; if (iy < 2 || iy >= static_cast(ysize) - 2) { Symmetric5BorderRow(in, rect, iy, weights, out->Row(iy)); } else { Symmetric5Row(in, rect, iy, weights, out->Row(iy)); } }, "Symmetric5x5Convolution")); } void Symmetric5_3(const Image3F& in, const Rect& rect, const WeightsSymmetric5& weights, ThreadPool* pool, Image3F* JXL_RESTRICT out) { PROFILER_FUNC; const size_t ysize = rect.ysize(); JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const size_t iy = task; if (iy < 2 || iy >= ysize - 2) { for (size_t c = 0; c < 3; ++c) { Symmetric5BorderRow(in.Plane(c), rect, iy, weights, out->PlaneRow(c, iy)); } } else { for (size_t c = 0; c < 3; ++c) { Symmetric5Row(in.Plane(c), rect, iy, weights, out->PlaneRow(c, iy)); } } }, "Symmetric5x5Convolution3")); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(Symmetric3); void Symmetric3(const ImageF& in, const Rect& rect, const WeightsSymmetric3& weights, ThreadPool* pool, ImageF* out) { return HWY_DYNAMIC_DISPATCH(Symmetric3)(in, rect, weights, pool, out); } HWY_EXPORT(Symmetric5); void Symmetric5(const ImageF& in, const Rect& rect, const WeightsSymmetric5& weights, ThreadPool* pool, ImageF* JXL_RESTRICT out) { return HWY_DYNAMIC_DISPATCH(Symmetric5)(in, rect, weights, pool, out); } HWY_EXPORT(Symmetric5_3); void Symmetric5_3(const Image3F& in, const Rect& rect, const WeightsSymmetric5& weights, ThreadPool* pool, Image3F* JXL_RESTRICT out) { return HWY_DYNAMIC_DISPATCH(Symmetric5_3)(in, rect, weights, pool, out); } HWY_EXPORT(Separable5); void Separable5(const ImageF& in, const Rect& rect, const WeightsSeparable5& weights, ThreadPool* pool, ImageF* out) { return HWY_DYNAMIC_DISPATCH(Separable5)(in, rect, weights, pool, out); } HWY_EXPORT(Separable5_3); void Separable5_3(const Image3F& in, const Rect& rect, const WeightsSeparable5& weights, ThreadPool* pool, Image3F* out) { return HWY_DYNAMIC_DISPATCH(Separable5_3)(in, rect, weights, pool, out); } HWY_EXPORT(Separable7); void Separable7(const ImageF& in, const Rect& rect, const WeightsSeparable7& weights, ThreadPool* pool, ImageF* out) { return HWY_DYNAMIC_DISPATCH(Separable7)(in, rect, weights, pool, out); } HWY_EXPORT(Separable7_3); void Separable7_3(const Image3F& in, const Rect& rect, const WeightsSeparable7& weights, ThreadPool* pool, Image3F* out) { return HWY_DYNAMIC_DISPATCH(Separable7_3)(in, rect, weights, pool, out); } //------------------------------------------------------------------------------ // Kernels // Concentrates energy in low-frequency components (e.g. for antialiasing). const WeightsSymmetric3& WeightsSymmetric3Lowpass() { // Computed by research/convolve_weights.py's cubic spline approximations of // prolate spheroidal wave functions. constexpr float w0 = 0.36208932f; constexpr float w1 = 0.12820096f; constexpr float w2 = 0.03127668f; static constexpr WeightsSymmetric3 weights = { {HWY_REP4(w0)}, {HWY_REP4(w1)}, {HWY_REP4(w2)}}; return weights; } const WeightsSeparable5& WeightsSeparable5Lowpass() { constexpr float w0 = 0.41714928f; constexpr float w1 = 0.25539268f; constexpr float w2 = 0.03603267f; static constexpr WeightsSeparable5 weights = { {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}, {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}}; return weights; } const WeightsSymmetric5& WeightsSymmetric5Lowpass() { static constexpr WeightsSymmetric5 weights = { {HWY_REP4(0.1740135f)}, {HWY_REP4(0.1065369f)}, {HWY_REP4(0.0150310f)}, {HWY_REP4(0.0652254f)}, {HWY_REP4(0.0012984f)}, {HWY_REP4(0.0092025f)}}; return weights; } const WeightsSeparable5& WeightsSeparable5Gaussian1() { constexpr float w0 = 0.38774f; constexpr float w1 = 0.24477f; constexpr float w2 = 0.06136f; static constexpr WeightsSeparable5 weights = { {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}, {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}}; return weights; } const WeightsSeparable5& WeightsSeparable5Gaussian2() { constexpr float w0 = 0.250301f; constexpr float w1 = 0.221461f; constexpr float w2 = 0.153388f; static constexpr WeightsSeparable5 weights = { {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}, {HWY_REP4(w0), HWY_REP4(w1), HWY_REP4(w2)}}; return weights; } //------------------------------------------------------------------------------ // Slow namespace { template float SlowSymmetric3Pixel(const ImageF& in, const int64_t ix, const int64_t iy, const int64_t xsize, const int64_t ysize, const WeightsSymmetric3& weights) { float sum = 0.0f; // ix: image; kx: kernel for (int64_t ky = -1; ky <= 1; ky++) { const int64_t y = WrapY()(iy + ky, ysize); const float* JXL_RESTRICT row_in = in.ConstRow(static_cast(y)); const float wc = ky == 0 ? weights.c[0] : weights.r[0]; const float wlr = ky == 0 ? weights.r[0] : weights.d[0]; const int64_t xm1 = WrapX()(ix - 1, xsize); const int64_t xp1 = WrapX()(ix + 1, xsize); sum += row_in[ix] * wc + (row_in[xm1] + row_in[xp1]) * wlr; } return sum; } template void SlowSymmetric3Row(const ImageF& in, const int64_t iy, const int64_t xsize, const int64_t ysize, const WeightsSymmetric3& weights, float* JXL_RESTRICT row_out) { row_out[0] = SlowSymmetric3Pixel(in, 0, iy, xsize, ysize, weights); for (int64_t ix = 1; ix < xsize - 1; ix++) { row_out[ix] = SlowSymmetric3Pixel(in, ix, iy, xsize, ysize, weights); } { const int64_t ix = xsize - 1; row_out[ix] = SlowSymmetric3Pixel(in, ix, iy, xsize, ysize, weights); } } } // namespace void SlowSymmetric3(const ImageF& in, const Rect& rect, const WeightsSymmetric3& weights, ThreadPool* pool, ImageF* JXL_RESTRICT out) { PROFILER_FUNC; const int64_t xsize = static_cast(rect.xsize()); const int64_t ysize = static_cast(rect.ysize()); const int64_t kRadius = 1; JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const int64_t iy = task; float* JXL_RESTRICT out_row = out->Row(static_cast(iy)); if (iy < kRadius || iy >= ysize - kRadius) { SlowSymmetric3Row(in, iy, xsize, ysize, weights, out_row); } else { SlowSymmetric3Row(in, iy, xsize, ysize, weights, out_row); } }, "SlowSymmetric3")); } void SlowSymmetric3(const Image3F& in, const Rect& rect, const WeightsSymmetric3& weights, ThreadPool* pool, Image3F* JXL_RESTRICT out) { PROFILER_FUNC; const int64_t xsize = static_cast(rect.xsize()); const int64_t ysize = static_cast(rect.ysize()); const int64_t kRadius = 1; JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const int64_t iy = task; const size_t oy = static_cast(iy); if (iy < kRadius || iy >= ysize - kRadius) { for (size_t c = 0; c < 3; ++c) { SlowSymmetric3Row(in.Plane(c), iy, xsize, ysize, weights, out->PlaneRow(c, oy)); } } else { for (size_t c = 0; c < 3; ++c) { SlowSymmetric3Row(in.Plane(c), iy, xsize, ysize, weights, out->PlaneRow(c, oy)); } } }, "SlowSymmetric3")); } namespace { // Separable kernels, any radius. float SlowSeparablePixel(const ImageF& in, const Rect& rect, const int64_t x, const int64_t y, const int64_t radius, const float* JXL_RESTRICT horz_weights, const float* JXL_RESTRICT vert_weights) { const size_t xsize = rect.xsize(); const size_t ysize = rect.ysize(); const WrapMirror wrap; float mul = 0.0f; for (int dy = -radius; dy <= radius; ++dy) { const float wy = vert_weights[std::abs(dy) * 4]; const size_t sy = wrap(y + dy, ysize); JXL_CHECK(sy < ysize); const float* const JXL_RESTRICT row = rect.ConstRow(in, sy); for (int dx = -radius; dx <= radius; ++dx) { const float wx = horz_weights[std::abs(dx) * 4]; const size_t sx = wrap(x + dx, xsize); JXL_CHECK(sx < xsize); mul += row[sx] * wx * wy; } } return mul; } } // namespace void SlowSeparable5(const ImageF& in, const Rect& rect, const WeightsSeparable5& weights, ThreadPool* pool, ImageF* out) { PROFILER_FUNC; const float* horz_weights = &weights.horz[0]; const float* vert_weights = &weights.vert[0]; const size_t ysize = rect.ysize(); JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const int64_t y = task; float* const JXL_RESTRICT row_out = out->Row(y); for (size_t x = 0; x < rect.xsize(); ++x) { row_out[x] = SlowSeparablePixel(in, rect, x, y, /*radius=*/2, horz_weights, vert_weights); } }, "SlowSeparable5")); } void SlowSeparable5(const Image3F& in, const Rect& rect, const WeightsSeparable5& weights, ThreadPool* pool, Image3F* out) { for (size_t c = 0; c < 3; ++c) { SlowSeparable5(in.Plane(c), rect, weights, pool, &out->Plane(c)); } } void SlowSeparable7(const ImageF& in, const Rect& rect, const WeightsSeparable7& weights, ThreadPool* pool, ImageF* out) { PROFILER_FUNC; const float* horz_weights = &weights.horz[0]; const float* vert_weights = &weights.vert[0]; const size_t ysize = rect.ysize(); JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const int64_t y = task; float* const JXL_RESTRICT row_out = out->Row(y); for (size_t x = 0; x < rect.xsize(); ++x) { row_out[x] = SlowSeparablePixel(in, rect, x, y, /*radius=*/3, horz_weights, vert_weights); } }, "SlowSeparable7")); } void SlowSeparable7(const Image3F& in, const Rect& rect, const WeightsSeparable7& weights, ThreadPool* pool, Image3F* out) { for (size_t c = 0; c < 3; ++c) { SlowSeparable7(in.Plane(c), rect, weights, pool, &out->Plane(c)); } } void SlowLaplacian5(const ImageF& in, const Rect& rect, ThreadPool* pool, ImageF* out) { PROFILER_FUNC; JXL_CHECK(SameSize(rect, *out)); const size_t xsize = rect.xsize(); const size_t ysize = rect.ysize(); const WrapMirror wrap; JXL_CHECK(RunOnPool( pool, 0, static_cast(ysize), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const int64_t y = task; const float* const JXL_RESTRICT row_t = rect.ConstRow(in, wrap(y - 2, ysize)); const float* const JXL_RESTRICT row_m = rect.ConstRow(in, y); const float* const JXL_RESTRICT row_b = rect.ConstRow(in, wrap(y + 2, ysize)); float* const JXL_RESTRICT row_out = out->Row(y); for (int64_t x = 0; static_cast(x) < xsize; ++x) { const int64_t xm2 = wrap(x - 2, xsize); const int64_t xp2 = wrap(x + 2, xsize); float r = 0.0f; r += /* */ 1.0f * row_t[x]; r += 1.0f * row_m[xm2] - 4.0f * row_m[x] + 1.0f * row_m[xp2]; r += /* */ 1.0f * row_b[x]; row_out[x] = r; } }, "SlowLaplacian5")); } void SlowLaplacian5(const Image3F& in, const Rect& rect, ThreadPool* pool, Image3F* out) { for (size_t c = 0; c < 3; ++c) { SlowLaplacian5(in.Plane(c), rect, pool, &out->Plane(c)); } } } // namespace jxl #endif // HWY_ONCE