// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_ac_strategy.h" #include #include #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/enc_ac_strategy.cc" #include #include #include "lib/jxl/ac_strategy.h" #include "lib/jxl/ans_params.h" #include "lib/jxl/base/bits.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/profiler.h" #include "lib/jxl/base/status.h" #include "lib/jxl/coeff_order_fwd.h" #include "lib/jxl/convolve.h" #include "lib/jxl/dct_scales.h" #include "lib/jxl/enc_params.h" #include "lib/jxl/enc_transforms-inl.h" #include "lib/jxl/entropy_coder.h" #include "lib/jxl/fast_math-inl.h" // Some of the floating point constants in this file and in other // files in the libjxl project have been obtained using the // tools/optimizer/simplex_fork.py tool. It is a variation of // Nelder-Mead optimization, and we generally try to minimize // BPP * pnorm aggregate as reported by the benchmark_xl tool, // but occasionally the values are optimized by using additional // constraints such as maintaining a certain density, or ratio of // popularity of integral transforms. Jyrki visually reviews all // such changes and often makes manual changes to maintain good // visual quality to changes where butteraugli was not sufficiently // sensitive to some kind of degradation. Unfortunately image quality // is still more of an art than science. // This must come before the begin/end_target, but HWY_ONCE is only true // after that, so use an "include guard". #ifndef LIB_JXL_ENC_AC_STRATEGY_ #define LIB_JXL_ENC_AC_STRATEGY_ // Parameters of the heuristic are marked with a OPTIMIZE comment. namespace jxl { // Debugging utilities. // Returns a linear sRGB color (as bytes) for each AC strategy. const uint8_t* TypeColor(const uint8_t& raw_strategy) { JXL_ASSERT(AcStrategy::IsRawStrategyValid(raw_strategy)); static_assert(AcStrategy::kNumValidStrategies == 27, "Change colors"); static constexpr uint8_t kColors[][3] = { {0xFF, 0xFF, 0x00}, // DCT8 {0xFF, 0x80, 0x80}, // HORNUSS {0xFF, 0x80, 0x80}, // DCT2x2 {0xFF, 0x80, 0x80}, // DCT4x4 {0x80, 0xFF, 0x00}, // DCT16x16 {0x00, 0xC0, 0x00}, // DCT32x32 {0xC0, 0xFF, 0x00}, // DCT16x8 {0xC0, 0xFF, 0x00}, // DCT8x16 {0x00, 0xFF, 0x00}, // DCT32x8 {0x00, 0xFF, 0x00}, // DCT8x32 {0x00, 0xFF, 0x00}, // DCT32x16 {0x00, 0xFF, 0x00}, // DCT16x32 {0xFF, 0x80, 0x00}, // DCT4x8 {0xFF, 0x80, 0x00}, // DCT8x4 {0xFF, 0xFF, 0x80}, // AFV0 {0xFF, 0xFF, 0x80}, // AFV1 {0xFF, 0xFF, 0x80}, // AFV2 {0xFF, 0xFF, 0x80}, // AFV3 {0x00, 0xC0, 0xFF}, // DCT64x64 {0x00, 0xFF, 0xFF}, // DCT64x32 {0x00, 0xFF, 0xFF}, // DCT32x64 {0x00, 0x40, 0xFF}, // DCT128x128 {0x00, 0x80, 0xFF}, // DCT128x64 {0x00, 0x80, 0xFF}, // DCT64x128 {0x00, 0x00, 0xC0}, // DCT256x256 {0x00, 0x00, 0xFF}, // DCT256x128 {0x00, 0x00, 0xFF}, // DCT128x256 }; return kColors[raw_strategy]; } const uint8_t* TypeMask(const uint8_t& raw_strategy) { JXL_ASSERT(AcStrategy::IsRawStrategyValid(raw_strategy)); static_assert(AcStrategy::kNumValidStrategies == 27, "Add masks"); // implicitly, first row and column is made dark static constexpr uint8_t kMask[][64] = { { 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // }, // DCT8 { 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 1, 0, 0, 1, 0, 0, // 0, 0, 1, 0, 0, 1, 0, 0, // 0, 0, 1, 1, 1, 1, 0, 0, // 0, 0, 1, 0, 0, 1, 0, 0, // 0, 0, 1, 0, 0, 1, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // }, // HORNUSS { 1, 1, 1, 1, 1, 1, 1, 1, // 1, 0, 1, 0, 1, 0, 1, 0, // 1, 1, 1, 1, 1, 1, 1, 1, // 1, 0, 1, 0, 1, 0, 1, 0, // 1, 1, 1, 1, 1, 1, 1, 1, // 1, 0, 1, 0, 1, 0, 1, 0, // 1, 1, 1, 1, 1, 1, 1, 1, // 1, 0, 1, 0, 1, 0, 1, 0, // }, // 2x2 { 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 1, 1, 1, 1, 1, 1, 1, 1, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // }, // 4x4 {}, // DCT16x16 (unused) {}, // DCT32x32 (unused) {}, // DCT16x8 (unused) {}, // DCT8x16 (unused) {}, // DCT32x8 (unused) {}, // DCT8x32 (unused) {}, // DCT32x16 (unused) {}, // DCT16x32 (unused) { 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 1, 1, 1, 1, 1, 1, 1, 1, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // }, // DCT4x8 { 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // 0, 0, 0, 0, 1, 0, 0, 0, // }, // DCT8x4 { 1, 1, 1, 1, 1, 0, 0, 0, // 1, 1, 1, 1, 0, 0, 0, 0, // 1, 1, 1, 0, 0, 0, 0, 0, // 1, 1, 0, 0, 0, 0, 0, 0, // 1, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // }, // AFV0 { 0, 0, 0, 0, 1, 1, 1, 1, // 0, 0, 0, 0, 0, 1, 1, 1, // 0, 0, 0, 0, 0, 0, 1, 1, // 0, 0, 0, 0, 0, 0, 0, 1, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // }, // AFV1 { 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 1, 0, 0, 0, 0, 0, 0, 0, // 1, 1, 0, 0, 0, 0, 0, 0, // 1, 1, 1, 0, 0, 0, 0, 0, // 1, 1, 1, 1, 0, 0, 0, 0, // }, // AFV2 { 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 0, // 0, 0, 0, 0, 0, 0, 0, 1, // 0, 0, 0, 0, 0, 0, 1, 1, // 0, 0, 0, 0, 0, 1, 1, 1, // }, // AFV3 }; return kMask[raw_strategy]; } void DumpAcStrategy(const AcStrategyImage& ac_strategy, size_t xsize, size_t ysize, const char* tag, AuxOut* aux_out) { Image3F color_acs(xsize, ysize); for (size_t y = 0; y < ysize; y++) { float* JXL_RESTRICT rows[3] = { color_acs.PlaneRow(0, y), color_acs.PlaneRow(1, y), color_acs.PlaneRow(2, y), }; const AcStrategyRow acs_row = ac_strategy.ConstRow(y / kBlockDim); for (size_t x = 0; x < xsize; x++) { AcStrategy acs = acs_row[x / kBlockDim]; const uint8_t* JXL_RESTRICT color = TypeColor(acs.RawStrategy()); for (size_t c = 0; c < 3; c++) { rows[c][x] = color[c] / 255.f; } } } size_t stride = color_acs.PixelsPerRow(); for (size_t c = 0; c < 3; c++) { for (size_t by = 0; by < DivCeil(ysize, kBlockDim); by++) { float* JXL_RESTRICT row = color_acs.PlaneRow(c, by * kBlockDim); const AcStrategyRow acs_row = ac_strategy.ConstRow(by); for (size_t bx = 0; bx < DivCeil(xsize, kBlockDim); bx++) { AcStrategy acs = acs_row[bx]; if (!acs.IsFirstBlock()) continue; const uint8_t* JXL_RESTRICT color = TypeColor(acs.RawStrategy()); const uint8_t* JXL_RESTRICT mask = TypeMask(acs.RawStrategy()); if (acs.covered_blocks_x() == 1 && acs.covered_blocks_y() == 1) { for (size_t iy = 0; iy < kBlockDim && by * kBlockDim + iy < ysize; iy++) { for (size_t ix = 0; ix < kBlockDim && bx * kBlockDim + ix < xsize; ix++) { if (mask[iy * kBlockDim + ix]) { row[iy * stride + bx * kBlockDim + ix] = color[c] / 800.f; } } } } // draw block edges for (size_t ix = 0; ix < kBlockDim * acs.covered_blocks_x() && bx * kBlockDim + ix < xsize; ix++) { row[0 * stride + bx * kBlockDim + ix] = color[c] / 350.f; } for (size_t iy = 0; iy < kBlockDim * acs.covered_blocks_y() && by * kBlockDim + iy < ysize; iy++) { row[iy * stride + bx * kBlockDim + 0] = color[c] / 350.f; } } } } aux_out->DumpImage(tag, color_acs); } } // namespace jxl #endif // LIB_JXL_ENC_AC_STRATEGY_ HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { bool MultiBlockTransformCrossesHorizontalBoundary( const AcStrategyImage& ac_strategy, size_t start_x, size_t y, size_t end_x) { if (start_x >= ac_strategy.xsize() || y >= ac_strategy.ysize()) { return false; } if (y % 8 == 0) { // Nothing crosses 64x64 boundaries, and the memory on the other side // of the 64x64 block may still uninitialized. return false; } end_x = std::min(end_x, ac_strategy.xsize()); // The first multiblock might be before the start_x, let's adjust it // to point to the first IsFirstBlock() == true block we find by backward // tracing. AcStrategyRow row = ac_strategy.ConstRow(y); const size_t start_x_limit = start_x & ~7; while (start_x != start_x_limit && !row[start_x].IsFirstBlock()) { --start_x; } for (size_t x = start_x; x < end_x;) { if (row[x].IsFirstBlock()) { x += row[x].covered_blocks_x(); } else { return true; } } return false; } bool MultiBlockTransformCrossesVerticalBoundary( const AcStrategyImage& ac_strategy, size_t x, size_t start_y, size_t end_y) { if (x >= ac_strategy.xsize() || start_y >= ac_strategy.ysize()) { return false; } if (x % 8 == 0) { // Nothing crosses 64x64 boundaries, and the memory on the other side // of the 64x64 block may still uninitialized. return false; } end_y = std::min(end_y, ac_strategy.ysize()); // The first multiblock might be before the start_y, let's adjust it // to point to the first IsFirstBlock() == true block we find by backward // tracing. const size_t start_y_limit = start_y & ~7; while (start_y != start_y_limit && !ac_strategy.ConstRow(start_y)[x].IsFirstBlock()) { --start_y; } for (size_t y = start_y; y < end_y;) { AcStrategyRow row = ac_strategy.ConstRow(y); if (row[x].IsFirstBlock()) { y += row[x].covered_blocks_y(); } else { return true; } } return false; } float EstimateEntropy(const AcStrategy& acs, size_t x, size_t y, const ACSConfig& config, const float* JXL_RESTRICT cmap_factors, float* block, float* scratch_space, uint32_t* quantized) { const size_t size = (1 << acs.log2_covered_blocks()) * kDCTBlockSize; // Apply transform. for (size_t c = 0; c < 3; c++) { float* JXL_RESTRICT block_c = block + size * c; TransformFromPixels(acs.Strategy(), &config.Pixel(c, x, y), config.src_stride, block_c, scratch_space); } HWY_FULL(float) df; const size_t num_blocks = acs.covered_blocks_x() * acs.covered_blocks_y(); float quant_norm8 = 0; float masking = 0; if (num_blocks == 1) { // When it is only one 8x8, we don't need aggregation of values. quant_norm8 = config.Quant(x / 8, y / 8); masking = 2.0f * config.Masking(x / 8, y / 8); } else if (num_blocks == 2) { // Taking max instead of 8th norm seems to work // better for smallest blocks up to 16x8. Jyrki couldn't get // improvements in trying the same for 16x16 blocks. if (acs.covered_blocks_y() == 2) { quant_norm8 = std::max(config.Quant(x / 8, y / 8), config.Quant(x / 8, y / 8 + 1)); masking = 2.0f * std::max(config.Masking(x / 8, y / 8), config.Masking(x / 8, y / 8 + 1)); } else { quant_norm8 = std::max(config.Quant(x / 8, y / 8), config.Quant(x / 8 + 1, y / 8)); masking = 2.0f * std::max(config.Masking(x / 8, y / 8), config.Masking(x / 8 + 1, y / 8)); } } else { float masking_norm2 = 0; float masking_max = 0; // Load QF value, calculate empirical heuristic on masking field // for weighting the information loss. Information loss manifests // itself as ringing, and masking could hide it. for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) { for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) { float qval = config.Quant(x / 8 + ix, y / 8 + iy); qval *= qval; qval *= qval; quant_norm8 += qval * qval; float maskval = config.Masking(x / 8 + ix, y / 8 + iy); masking_max = std::max(masking_max, maskval); masking_norm2 += maskval * maskval; } } quant_norm8 /= num_blocks; quant_norm8 = FastPowf(quant_norm8, 1.0f / 8.0f); masking_norm2 = sqrt(masking_norm2 / num_blocks); // This is a highly empirical formula. masking = (masking_norm2 + masking_max); } const auto q = Set(df, quant_norm8); // Compute entropy. float entropy = config.base_entropy; auto info_loss = Zero(df); auto info_loss2 = Zero(df); for (size_t c = 0; c < 3; c++) { const float* inv_matrix = config.dequant->InvMatrix(acs.RawStrategy(), c); const auto cmap_factor = Set(df, cmap_factors[c]); auto entropy_v = Zero(df); auto nzeros_v = Zero(df); auto cost1 = Set(df, config.cost1); auto cost2 = Set(df, config.cost2); auto cost_delta = Set(df, config.cost_delta); for (size_t i = 0; i < num_blocks * kDCTBlockSize; i += Lanes(df)) { const auto in = Load(df, block + c * size + i); const auto in_y = Load(df, block + size + i) * cmap_factor; const auto im = Load(df, inv_matrix + i); const auto val = (in - in_y) * im * q; const auto rval = Round(val); const auto diff = AbsDiff(val, rval); info_loss += diff; info_loss2 += diff * diff; const auto q = Abs(rval); const auto q_is_zero = q == Zero(df); entropy_v += IfThenElseZero(q >= Set(df, 1.5f), cost2); // We used to have q * C here, but that cost model seems to // be punishing large values more than necessary. Sqrt tries // to avoid large values less aggressively. Having high accuracy // around zero is most important at low qualities, and there // we have directly specified costs for 0, 1, and 2. entropy_v += Sqrt(q) * cost_delta; nzeros_v += IfThenZeroElse(q_is_zero, Set(df, 1.0f)); } entropy_v += nzeros_v * cost1; entropy += GetLane(SumOfLanes(df, entropy_v)); size_t num_nzeros = GetLane(SumOfLanes(df, nzeros_v)); // Add #bit of num_nonzeros, as an estimate of the cost for encoding the // number of non-zeros of the block. size_t nbits = CeilLog2Nonzero(num_nzeros + 1) + 1; // Also add #bit of #bit of num_nonzeros, to estimate the ANS cost, with a // bias. entropy += config.zeros_mul * (CeilLog2Nonzero(nbits + 17) + nbits); } float ret = entropy + masking * ((config.info_loss_multiplier * GetLane(SumOfLanes(df, info_loss))) + (config.info_loss_multiplier2 * sqrt(num_blocks * GetLane(SumOfLanes(df, info_loss2))))); return ret; } uint8_t FindBest8x8Transform(size_t x, size_t y, int encoding_speed_tier, const ACSConfig& config, const float* JXL_RESTRICT cmap_factors, AcStrategyImage* JXL_RESTRICT ac_strategy, float* block, float* scratch_space, uint32_t* quantized, float* entropy_out) { struct TransformTry8x8 { AcStrategy::Type type; int encoding_speed_tier_max_limit; float entropy_add; float entropy_mul; }; static const TransformTry8x8 kTransforms8x8[] = { { AcStrategy::Type::DCT, 9, 3.0f, 0.745f, }, { AcStrategy::Type::DCT4X4, 5, 4.0f, 1.0179946967008329f, }, { AcStrategy::Type::DCT2X2, 4, 4.0f, 0.76721119707580943f, }, { AcStrategy::Type::DCT4X8, 5, 0.0f, 0.700754622182473063f, }, { AcStrategy::Type::DCT8X4, 5, 0.0f, 0.700754622182473063f, }, { AcStrategy::Type::IDENTITY, 5, 8.0f, 0.81217614513585534f, }, { AcStrategy::Type::AFV0, 4, 3.0f, 0.70086131125719425f, }, { AcStrategy::Type::AFV1, 4, 3.0f, 0.70086131125719425f, }, { AcStrategy::Type::AFV2, 4, 3.0f, 0.70086131125719425f, }, { AcStrategy::Type::AFV3, 4, 3.0f, 0.70086131125719425f, }, }; double best = 1e30; uint8_t best_tx = kTransforms8x8[0].type; for (auto tx : kTransforms8x8) { if (tx.encoding_speed_tier_max_limit < encoding_speed_tier) { continue; } AcStrategy acs = AcStrategy::FromRawStrategy(tx.type); float entropy = EstimateEntropy(acs, x, y, config, cmap_factors, block, scratch_space, quantized); entropy = tx.entropy_add + tx.entropy_mul * entropy; if (entropy < best) { best_tx = tx.type; best = entropy; } } *entropy_out = best; return best_tx; } // bx, by addresses the 64x64 block at 8x8 subresolution // cx, cy addresses the left, upper 8x8 block position of the candidate // transform. void TryMergeAcs(AcStrategy::Type acs_raw, size_t bx, size_t by, size_t cx, size_t cy, const ACSConfig& config, const float* JXL_RESTRICT cmap_factors, AcStrategyImage* JXL_RESTRICT ac_strategy, const float entropy_mul, const uint8_t candidate_priority, uint8_t* priority, float* JXL_RESTRICT entropy_estimate, float* block, float* scratch_space, uint32_t* quantized) { AcStrategy acs = AcStrategy::FromRawStrategy(acs_raw); float entropy_current = 0; for (size_t iy = 0; iy < acs.covered_blocks_y(); ++iy) { for (size_t ix = 0; ix < acs.covered_blocks_x(); ++ix) { if (priority[(cy + iy) * 8 + (cx + ix)] >= candidate_priority) { // Transform would reuse already allocated blocks and // lead to invalid overlaps, for example DCT64X32 vs. // DCT32X64. return; } entropy_current += entropy_estimate[(cy + iy) * 8 + (cx + ix)]; } } float entropy_candidate = entropy_mul * EstimateEntropy(acs, (bx + cx) * 8, (by + cy) * 8, config, cmap_factors, block, scratch_space, quantized); if (entropy_candidate >= entropy_current) return; // Accept the candidate. for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) { for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) { entropy_estimate[(cy + iy) * 8 + cx + ix] = 0; priority[(cy + iy) * 8 + cx + ix] = candidate_priority; } } ac_strategy->Set(bx + cx, by + cy, acs_raw); entropy_estimate[cy * 8 + cx] = entropy_candidate; } static void SetEntropyForTransform(size_t cx, size_t cy, const AcStrategy::Type acs_raw, float entropy, float* JXL_RESTRICT entropy_estimate) { const AcStrategy acs = AcStrategy::FromRawStrategy(acs_raw); for (size_t dy = 0; dy < acs.covered_blocks_y(); ++dy) { for (size_t dx = 0; dx < acs.covered_blocks_x(); ++dx) { entropy_estimate[(cy + dy) * 8 + cx + dx] = 0.0; } } entropy_estimate[cy * 8 + cx] = entropy; } AcStrategy::Type AcsSquare(size_t blocks) { if (blocks == 2) { return AcStrategy::Type::DCT16X16; } else if (blocks == 4) { return AcStrategy::Type::DCT32X32; } else { return AcStrategy::Type::DCT64X64; } } AcStrategy::Type AcsVerticalSplit(size_t blocks) { if (blocks == 2) { return AcStrategy::Type::DCT16X8; } else if (blocks == 4) { return AcStrategy::Type::DCT32X16; } else { return AcStrategy::Type::DCT64X32; } } AcStrategy::Type AcsHorizontalSplit(size_t blocks) { if (blocks == 2) { return AcStrategy::Type::DCT8X16; } else if (blocks == 4) { return AcStrategy::Type::DCT16X32; } else { return AcStrategy::Type::DCT32X64; } } // The following function tries to merge smaller transforms into // squares and the rectangles originating from a single middle division // (horizontal or vertical) fairly. // // This is now generalized to concern about squares // of blocks X blocks size, where a block is 8x8 pixels. void FindBestFirstLevelDivisionForSquare( size_t blocks, bool allow_square_transform, size_t bx, size_t by, size_t cx, size_t cy, const ACSConfig& config, const float* JXL_RESTRICT cmap_factors, AcStrategyImage* JXL_RESTRICT ac_strategy, const float entropy_mul_JXK, const float entropy_mul_JXJ, float* JXL_RESTRICT entropy_estimate, float* block, float* scratch_space, uint32_t* quantized) { // We denote J for the larger dimension here, and K for the smaller. // For example, for 32x32 block splitting, J would be 32, K 16. const size_t blocks_half = blocks / 2; const AcStrategy::Type acs_rawJXK = AcsVerticalSplit(blocks); const AcStrategy::Type acs_rawKXJ = AcsHorizontalSplit(blocks); const AcStrategy::Type acs_rawJXJ = AcsSquare(blocks); const AcStrategy acsJXK = AcStrategy::FromRawStrategy(acs_rawJXK); const AcStrategy acsKXJ = AcStrategy::FromRawStrategy(acs_rawKXJ); const AcStrategy acsJXJ = AcStrategy::FromRawStrategy(acs_rawJXJ); AcStrategyRow row0 = ac_strategy->ConstRow(by + cy + 0); AcStrategyRow row1 = ac_strategy->ConstRow(by + cy + blocks_half); // Let's check if we can consider a JXJ block here at all. // This is not necessary in the basic use of hierarchically merging // blocks in the simplest possible way, but is needed when we try other // 'floating' options of merging, possibly after a simple hierarchical // merge has been explored. if (MultiBlockTransformCrossesHorizontalBoundary(*ac_strategy, bx + cx, by + cy, bx + cx + blocks) || MultiBlockTransformCrossesHorizontalBoundary( *ac_strategy, bx + cx, by + cy + blocks, bx + cx + blocks) || MultiBlockTransformCrossesVerticalBoundary(*ac_strategy, bx + cx, by + cy, by + cy + blocks) || MultiBlockTransformCrossesVerticalBoundary(*ac_strategy, bx + cx + blocks, by + cy, by + cy + blocks)) { return; // not suitable for JxJ analysis, some transforms leak out. } // For floating transforms there may be // already blocks selected that make either or both JXK and // KXJ not feasible for this location. const bool allow_JXK = !MultiBlockTransformCrossesVerticalBoundary( *ac_strategy, bx + cx + blocks_half, by + cy, by + cy + blocks); const bool allow_KXJ = !MultiBlockTransformCrossesHorizontalBoundary( *ac_strategy, bx + cx, by + cy + blocks_half, bx + cx + blocks); // Current entropies aggregated on NxN resolution. float entropy[2][2] = {}; for (size_t dy = 0; dy < blocks; ++dy) { for (size_t dx = 0; dx < blocks; ++dx) { entropy[dy / blocks_half][dx / blocks_half] += entropy_estimate[(cy + dy) * 8 + (cx + dx)]; } } float entropy_JXK_left = std::numeric_limits::max(); float entropy_JXK_right = std::numeric_limits::max(); float entropy_KXJ_top = std::numeric_limits::max(); float entropy_KXJ_bottom = std::numeric_limits::max(); float entropy_JXJ = std::numeric_limits::max(); if (allow_JXK) { if (row0[bx + cx + 0].RawStrategy() != acs_rawJXK) { entropy_JXK_left = entropy_mul_JXK * EstimateEntropy(acsJXK, (bx + cx + 0) * 8, (by + cy + 0) * 8, config, cmap_factors, block, scratch_space, quantized); } if (row0[bx + cx + blocks_half].RawStrategy() != acs_rawJXK) { entropy_JXK_right = entropy_mul_JXK * EstimateEntropy(acsJXK, (bx + cx + blocks_half) * 8, (by + cy + 0) * 8, config, cmap_factors, block, scratch_space, quantized); } } if (allow_KXJ) { if (row0[bx + cx].RawStrategy() != acs_rawKXJ) { entropy_KXJ_top = entropy_mul_JXK * EstimateEntropy(acsKXJ, (bx + cx + 0) * 8, (by + cy + 0) * 8, config, cmap_factors, block, scratch_space, quantized); } if (row1[bx + cx].RawStrategy() != acs_rawKXJ) { entropy_KXJ_bottom = entropy_mul_JXK * EstimateEntropy(acsKXJ, (bx + cx + 0) * 8, (by + cy + blocks_half) * 8, config, cmap_factors, block, scratch_space, quantized); } } if (allow_square_transform) { // We control the exploration of the square transform separately so that // we can turn it off at high decoding speeds for 32x32, but still allow // exploring 16x32 and 32x16. entropy_JXJ = entropy_mul_JXJ * EstimateEntropy(acsJXJ, (bx + cx + 0) * 8, (by + cy + 0) * 8, config, cmap_factors, block, scratch_space, quantized); } // Test if this block should have JXK or KXJ transforms, // because it can have only one or the other. float costJxN = std::min(entropy_JXK_left, entropy[0][0] + entropy[1][0]) + std::min(entropy_JXK_right, entropy[0][1] + entropy[1][1]); float costNxJ = std::min(entropy_KXJ_top, entropy[0][0] + entropy[0][1]) + std::min(entropy_KXJ_bottom, entropy[1][0] + entropy[1][1]); if (entropy_JXJ < costJxN && entropy_JXJ < costNxJ) { ac_strategy->Set(bx + cx, by + cy, acs_rawJXJ); SetEntropyForTransform(cx, cy, acs_rawJXJ, entropy_JXJ, entropy_estimate); } else if (costJxN < costNxJ) { if (entropy_JXK_left < entropy[0][0] + entropy[1][0]) { ac_strategy->Set(bx + cx, by + cy, acs_rawJXK); SetEntropyForTransform(cx, cy, acs_rawJXK, entropy_JXK_left, entropy_estimate); } if (entropy_JXK_right < entropy[0][1] + entropy[1][1]) { ac_strategy->Set(bx + cx + blocks_half, by + cy, acs_rawJXK); SetEntropyForTransform(cx + blocks_half, cy, acs_rawJXK, entropy_JXK_right, entropy_estimate); } } else { if (entropy_KXJ_top < entropy[0][0] + entropy[0][1]) { ac_strategy->Set(bx + cx, by + cy, acs_rawKXJ); SetEntropyForTransform(cx, cy, acs_rawKXJ, entropy_KXJ_top, entropy_estimate); } if (entropy_KXJ_bottom < entropy[1][0] + entropy[1][1]) { ac_strategy->Set(bx + cx, by + cy + blocks_half, acs_rawKXJ); SetEntropyForTransform(cx, cy + blocks_half, acs_rawKXJ, entropy_KXJ_bottom, entropy_estimate); } } } void ProcessRectACS(PassesEncoderState* JXL_RESTRICT enc_state, const ACSConfig& config, const Rect& rect) { // Main philosophy here: // 1. First find best 8x8 transform for each area. // 2. Merging them into larger transforms where possibly, but // starting from the smallest transforms (16x8 and 8x16). // Additional complication: 16x8 and 8x16 are considered // simultanouesly and fairly against each other. // We are looking at 64x64 squares since the YtoX and YtoB // maps happen to be at that resolution, and having // integral transforms cross these boundaries leads to // additional complications. const CompressParams& cparams = enc_state->cparams; const float butteraugli_target = cparams.butteraugli_distance; AcStrategyImage* ac_strategy = &enc_state->shared.ac_strategy; // TODO(veluca): reuse allocations auto mem = hwy::AllocateAligned(5 * AcStrategy::kMaxCoeffArea); auto qmem = hwy::AllocateAligned(AcStrategy::kMaxCoeffArea); uint32_t* JXL_RESTRICT quantized = qmem.get(); float* JXL_RESTRICT block = mem.get(); float* JXL_RESTRICT scratch_space = mem.get() + 3 * AcStrategy::kMaxCoeffArea; size_t bx = rect.x0(); size_t by = rect.y0(); JXL_ASSERT(rect.xsize() <= 8); JXL_ASSERT(rect.ysize() <= 8); size_t tx = bx / kColorTileDimInBlocks; size_t ty = by / kColorTileDimInBlocks; const float cmap_factors[3] = { enc_state->shared.cmap.YtoXRatio( enc_state->shared.cmap.ytox_map.ConstRow(ty)[tx]), 0.0f, enc_state->shared.cmap.YtoBRatio( enc_state->shared.cmap.ytob_map.ConstRow(ty)[tx]), }; if (cparams.speed_tier > SpeedTier::kHare) return; // First compute the best 8x8 transform for each square. Later, we do not // experiment with different combinations, but only use the best of the 8x8s // when DCT8X8 is specified in the tree search. // 8x8 transforms have 10 variants, but every larger transform is just a DCT. float entropy_estimate[64] = {}; // Favor all 8x8 transforms (against 16x8 and larger transforms)) at // low butteraugli_target distances. static const float k8x8mul1 = -0.55; static const float k8x8mul2 = 1.0735757687292623f; static const float k8x8base = 1.4; const float mul8x8 = k8x8mul2 + k8x8mul1 / (butteraugli_target + k8x8base); for (size_t iy = 0; iy < rect.ysize(); iy++) { for (size_t ix = 0; ix < rect.xsize(); ix++) { float entropy = 0.0; const uint8_t best_of_8x8s = FindBest8x8Transform( 8 * (bx + ix), 8 * (by + iy), static_cast(cparams.speed_tier), config, cmap_factors, ac_strategy, block, scratch_space, quantized, &entropy); ac_strategy->Set(bx + ix, by + iy, static_cast(best_of_8x8s)); entropy_estimate[iy * 8 + ix] = entropy * mul8x8; } } // Merge when a larger transform is better than the previously // searched best combination of 8x8 transforms. struct MergeTry { AcStrategy::Type type; uint8_t priority; uint8_t decoding_speed_tier_max_limit; uint8_t encoding_speed_tier_max_limit; float entropy_mul; }; static const float k8X16mul1 = -0.55; static const float k8X16mul2 = 0.9019587899705066; static const float k8X16base = 1.6; const float entropy_mul16X8 = k8X16mul2 + k8X16mul1 / (butteraugli_target + k8X16base); // const float entropy_mul16X8 = mul8X16 * 0.91195782912371126f; static const float k16X16mul1 = -0.35; static const float k16X16mul2 = 0.82; static const float k16X16base = 2.0; const float entropy_mul16X16 = k16X16mul2 + k16X16mul1 / (butteraugli_target + k16X16base); // const float entropy_mul16X16 = mul16X16 * 0.83183417727960129f; static const float k32X16mul1 = -0.1; static const float k32X16mul2 = 0.84; static const float k32X16base = 2.5; const float entropy_mul16X32 = k32X16mul2 + k32X16mul1 / (butteraugli_target + k32X16base); const float entropy_mul32X32 = 0.9; const float entropy_mul64X64 = 1.43f; // TODO(jyrki): Consider this feedback in further changes: // Also effectively when the multipliers for smaller blocks are // below 1, this raises the bar for the bigger blocks even higher // in that sense these constants are not independent (e.g. changing // the constant for DCT16x32 by -5% (making it more likely) also // means that DCT32x32 becomes harder to do when starting from // two DCT16x32s). It might be better to make them more independent, // e.g. by not applying the multiplier when storing the new entropy // estimates in TryMergeToACSCandidate(). const MergeTry kTransformsForMerge[9] = { {AcStrategy::Type::DCT16X8, 2, 4, 5, entropy_mul16X8}, {AcStrategy::Type::DCT8X16, 2, 4, 5, entropy_mul16X8}, // FindBestFirstLevelDivisionForSquare looks for DCT16X16 and its // subdivisions. {AcStrategy::Type::DCT16X16, 3, entropy_mul16X16}, {AcStrategy::Type::DCT16X32, 4, 4, 4, entropy_mul16X32}, {AcStrategy::Type::DCT32X16, 4, 4, 4, entropy_mul16X32}, // FindBestFirstLevelDivisionForSquare looks for DCT32X32 and its // subdivisions. {AcStrategy::Type::DCT32X32, 5, 1, 5, // 0.9822994906548809f}, // TODO(jyrki): re-enable 64x32 and 64x64 if/when possible. {AcStrategy::Type::DCT64X32, 6, 1, 3, 1.26f}, {AcStrategy::Type::DCT32X64, 6, 1, 3, 1.26f}, // {AcStrategy::Type::DCT64X64, 8, 1, 3, 2.0846542128012948f}, }; /* These sizes not yet included in merge heuristic: set(AcStrategy::Type::DCT32X8, 0.0f, 2.261390410971102f); set(AcStrategy::Type::DCT8X32, 0.0f, 2.261390410971102f); set(AcStrategy::Type::DCT128X128, 0.0f, 1.0f); set(AcStrategy::Type::DCT128X64, 0.0f, 0.73f); set(AcStrategy::Type::DCT64X128, 0.0f, 0.73f); set(AcStrategy::Type::DCT256X256, 0.0f, 1.0f); set(AcStrategy::Type::DCT256X128, 0.0f, 0.73f); set(AcStrategy::Type::DCT128X256, 0.0f, 0.73f); */ // Priority is a tricky kludge to avoid collisions so that transforms // don't overlap. uint8_t priority[64] = {}; for (auto tx : kTransformsForMerge) { if (tx.decoding_speed_tier_max_limit < cparams.decoding_speed_tier) { continue; } AcStrategy acs = AcStrategy::FromRawStrategy(tx.type); for (size_t cy = 0; cy + acs.covered_blocks_y() - 1 < rect.ysize(); cy += acs.covered_blocks_y()) { for (size_t cx = 0; cx + acs.covered_blocks_x() - 1 < rect.xsize(); cx += acs.covered_blocks_x()) { if (cy + 7 < rect.ysize() && cx + 7 < rect.xsize()) { if (cparams.decoding_speed_tier < 4 && tx.type == AcStrategy::Type::DCT32X64) { // We handle both DCT8X16 and DCT16X8 at the same time. if ((cy | cx) % 8 == 0) { FindBestFirstLevelDivisionForSquare( 8, true, bx, by, cx, cy, config, cmap_factors, ac_strategy, tx.entropy_mul, entropy_mul64X64, entropy_estimate, block, scratch_space, quantized); } continue; } else if (tx.type == AcStrategy::Type::DCT32X16) { // We handled both DCT8X16 and DCT16X8 at the same time, // and that is above. The last column and last row, // when the last column or last row is odd numbered, // are still handled by TryMergeAcs. continue; } } if ((tx.type == AcStrategy::Type::DCT16X32 && cy % 4 != 0) || (tx.type == AcStrategy::Type::DCT32X16 && cx % 4 != 0)) { // already covered by FindBest32X32 continue; } if (cy + 3 < rect.ysize() && cx + 3 < rect.xsize()) { if (tx.type == AcStrategy::Type::DCT16X32) { // We handle both DCT8X16 and DCT16X8 at the same time. bool enable_32x32 = cparams.decoding_speed_tier < 4; if ((cy | cx) % 4 == 0) { FindBestFirstLevelDivisionForSquare( 4, enable_32x32, bx, by, cx, cy, config, cmap_factors, ac_strategy, tx.entropy_mul, entropy_mul32X32, entropy_estimate, block, scratch_space, quantized); } continue; } else if (tx.type == AcStrategy::Type::DCT32X16) { // We handled both DCT8X16 and DCT16X8 at the same time, // and that is above. The last column and last row, // when the last column or last row is odd numbered, // are still handled by TryMergeAcs. continue; } } if ((tx.type == AcStrategy::Type::DCT16X32 && cy % 4 != 0) || (tx.type == AcStrategy::Type::DCT32X16 && cx % 4 != 0)) { // already covered by FindBest32X32 continue; } if (cy + 1 < rect.ysize() && cx + 1 < rect.xsize()) { if (tx.type == AcStrategy::Type::DCT8X16) { // We handle both DCT8X16 and DCT16X8 at the same time. if ((cy | cx) % 2 == 0) { FindBestFirstLevelDivisionForSquare( 2, true, bx, by, cx, cy, config, cmap_factors, ac_strategy, tx.entropy_mul, entropy_mul16X16, entropy_estimate, block, scratch_space, quantized); } continue; } else if (tx.type == AcStrategy::Type::DCT16X8) { // We handled both DCT8X16 and DCT16X8 at the same time, // and that is above. The last column and last row, // when the last column or last row is odd numbered, // are still handled by TryMergeAcs. continue; } } if ((tx.type == AcStrategy::Type::DCT8X16 && cy % 2 == 1) || (tx.type == AcStrategy::Type::DCT16X8 && cx % 2 == 1)) { // already covered by FindBestFirstLevelDivisionForSquare continue; } // All other merge sizes are handled here. // Some of the DCT16X8s and DCT8X16s will still leak through here // when there is an odd number of 8x8 blocks, then the last row // and column will get their DCT16X8s and DCT8X16s through the // normal integral transform merging process. TryMergeAcs(tx.type, bx, by, cx, cy, config, cmap_factors, ac_strategy, tx.entropy_mul, tx.priority, &priority[0], entropy_estimate, block, scratch_space, quantized); } } } // Here we still try to do some non-aligned matching, find a few more // 16X8, 8X16 and 16X16s between the non-2-aligned blocks. if (cparams.speed_tier >= SpeedTier::kHare) { return; } for (int ii = 0; ii < 3; ++ii) { for (size_t cy = 1 - (ii == 1); cy + 1 < rect.ysize(); cy += 2) { for (size_t cx = 1 - (ii == 2); cx + 1 < rect.xsize(); cx += 2) { FindBestFirstLevelDivisionForSquare( 2, true, bx, by, cx, cy, config, cmap_factors, ac_strategy, entropy_mul16X8, entropy_mul16X16, entropy_estimate, block, scratch_space, quantized); } } } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(ProcessRectACS); void AcStrategyHeuristics::Init(const Image3F& src, PassesEncoderState* enc_state) { this->enc_state = enc_state; config.dequant = &enc_state->shared.matrices; const CompressParams& cparams = enc_state->cparams; const float butteraugli_target = cparams.butteraugli_distance; if (cparams.speed_tier >= SpeedTier::kCheetah) { JXL_CHECK(enc_state->shared.matrices.EnsureComputed(1)); // DCT8 only } else { uint32_t acs_mask = 0; // All transforms up to 64x64. for (size_t i = 0; i < AcStrategy::DCT128X128; i++) { acs_mask |= (1 << i); } JXL_CHECK(enc_state->shared.matrices.EnsureComputed(acs_mask)); } // Image row pointers and strides. config.quant_field_row = enc_state->initial_quant_field.Row(0); config.quant_field_stride = enc_state->initial_quant_field.PixelsPerRow(); auto& mask = enc_state->initial_quant_masking; if (mask.xsize() > 0 && mask.ysize() > 0) { config.masking_field_row = mask.Row(0); config.masking_field_stride = mask.PixelsPerRow(); } config.src_rows[0] = src.ConstPlaneRow(0, 0); config.src_rows[1] = src.ConstPlaneRow(1, 0); config.src_rows[2] = src.ConstPlaneRow(2, 0); config.src_stride = src.PixelsPerRow(); // Entropy estimate is composed of two factors: // - estimate of the number of bits that will be used by the block // - information loss due to quantization // The following constant controls the relative weights of these components. config.info_loss_multiplier = 138.0f; config.info_loss_multiplier2 = 50.46839691767866; // TODO(jyrki): explore base_entropy setting more. // A small value (0?) works better at high distance, while a larger value // may be more effective at low distance/high bpp. config.base_entropy = 0.0; config.zeros_mul = 7.565053364251793f; // Lots of +1 and -1 coefficients at high quality, it is // beneficial to favor them. At low qualities zeros matter more // and +1 / -1 coefficients are already quite harmful. float slope = std::min(1.0f, butteraugli_target * (1.0f / 3)); config.cost1 = 1 + slope * 8.8703248061477744f; config.cost2 = 4.4628149885273363f; config.cost_delta = 5.3359184934516337f; JXL_ASSERT(enc_state->shared.ac_strategy.xsize() == enc_state->shared.frame_dim.xsize_blocks); JXL_ASSERT(enc_state->shared.ac_strategy.ysize() == enc_state->shared.frame_dim.ysize_blocks); } void AcStrategyHeuristics::ProcessRect(const Rect& rect) { PROFILER_FUNC; const CompressParams& cparams = enc_state->cparams; // In Falcon mode, use DCT8 everywhere and uniform quantization. if (cparams.speed_tier >= SpeedTier::kCheetah) { enc_state->shared.ac_strategy.FillDCT8(rect); return; } HWY_DYNAMIC_DISPATCH(ProcessRectACS) (enc_state, config, rect); } void AcStrategyHeuristics::Finalize(AuxOut* aux_out) { const auto& ac_strategy = enc_state->shared.ac_strategy; // Accounting and debug output. if (aux_out != nullptr) { aux_out->num_small_blocks = ac_strategy.CountBlocks(AcStrategy::Type::IDENTITY) + ac_strategy.CountBlocks(AcStrategy::Type::DCT2X2) + ac_strategy.CountBlocks(AcStrategy::Type::DCT4X4); aux_out->num_dct4x8_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT4X8) + ac_strategy.CountBlocks(AcStrategy::Type::DCT8X4); aux_out->num_afv_blocks = ac_strategy.CountBlocks(AcStrategy::Type::AFV0) + ac_strategy.CountBlocks(AcStrategy::Type::AFV1) + ac_strategy.CountBlocks(AcStrategy::Type::AFV2) + ac_strategy.CountBlocks(AcStrategy::Type::AFV3); aux_out->num_dct8_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT); aux_out->num_dct8x16_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT8X16) + ac_strategy.CountBlocks(AcStrategy::Type::DCT16X8); aux_out->num_dct8x32_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT8X32) + ac_strategy.CountBlocks(AcStrategy::Type::DCT32X8); aux_out->num_dct16_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT16X16); aux_out->num_dct16x32_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT16X32) + ac_strategy.CountBlocks(AcStrategy::Type::DCT32X16); aux_out->num_dct32_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT32X32); aux_out->num_dct32x64_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT32X64) + ac_strategy.CountBlocks(AcStrategy::Type::DCT64X32); aux_out->num_dct64_blocks = ac_strategy.CountBlocks(AcStrategy::Type::DCT64X64); } if (WantDebugOutput(aux_out)) { DumpAcStrategy(ac_strategy, enc_state->shared.frame_dim.xsize, enc_state->shared.frame_dim.ysize, "ac_strategy", aux_out); } } } // namespace jxl #endif // HWY_ONCE