// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_ar_control_field.h" #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/enc_ar_control_field.cc" #include #include #include "lib/jxl/ac_strategy.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/data_parallel.h" #include "lib/jxl/base/status.h" #include "lib/jxl/chroma_from_luma.h" #include "lib/jxl/common.h" #include "lib/jxl/enc_adaptive_quantization.h" #include "lib/jxl/enc_params.h" #include "lib/jxl/image.h" #include "lib/jxl/image_bundle.h" #include "lib/jxl/image_ops.h" #include "lib/jxl/quant_weights.h" #include "lib/jxl/quantizer.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { namespace { void ProcessTile(const Image3F& opsin, PassesEncoderState* enc_state, const Rect& rect, ArControlFieldHeuristics::TempImages* temp_image) { constexpr size_t N = kBlockDim; ImageB* JXL_RESTRICT epf_sharpness = &enc_state->shared.epf_sharpness; ImageF* JXL_RESTRICT quant = &enc_state->initial_quant_field; JXL_ASSERT( epf_sharpness->xsize() == enc_state->shared.frame_dim.xsize_blocks && epf_sharpness->ysize() == enc_state->shared.frame_dim.ysize_blocks); if (enc_state->cparams.butteraugli_distance < kMinButteraugliForDynamicAR || enc_state->cparams.speed_tier > SpeedTier::kWombat || enc_state->shared.frame_header.loop_filter.epf_iters == 0) { FillPlane(static_cast(4), epf_sharpness, rect); return; } // Likely better to have a higher X weight, like: // const float kChannelWeights[3] = {47.0f, 4.35f, 0.287f}; const float kChannelWeights[3] = {4.35f, 4.35f, 0.287f}; const float kChannelWeightsLapNeg[3] = {-0.125f * kChannelWeights[0], -0.125f * kChannelWeights[1], -0.125f * kChannelWeights[2]}; const size_t sharpness_stride = static_cast(epf_sharpness->PixelsPerRow()); size_t by0 = rect.y0(); size_t by1 = rect.y0() + rect.ysize(); size_t bx0 = rect.x0(); size_t bx1 = rect.x0() + rect.xsize(); temp_image->InitOnce(); ImageF& laplacian_sqrsum = temp_image->laplacian_sqrsum; // Calculate the L2 of the 3x3 Laplacian in an integral transform // (for example 32x32 dct). This relates to transforms ability // to propagate artefacts. size_t y0 = by0 == 0 ? 2 : 0; size_t y1 = by1 * N + 4 <= opsin.ysize() + 2 ? (by1 - by0) * N + 4 : opsin.ysize() + 2 - by0 * N; size_t x0 = bx0 == 0 ? 2 : 0; size_t x1 = bx1 * N + 4 <= opsin.xsize() + 2 ? (bx1 - bx0) * N + 4 : opsin.xsize() + 2 - bx0 * N; HWY_FULL(float) df; for (size_t y = y0; y < y1; y++) { float* JXL_RESTRICT laplacian_sqrsum_row = laplacian_sqrsum.Row(y); size_t cy = y + by0 * N - 2; const float* JXL_RESTRICT in_row_t[3]; const float* JXL_RESTRICT in_row[3]; const float* JXL_RESTRICT in_row_b[3]; for (size_t c = 0; c < 3; c++) { in_row_t[c] = opsin.PlaneRow(c, cy > 0 ? cy - 1 : cy); in_row[c] = opsin.PlaneRow(c, cy); in_row_b[c] = opsin.PlaneRow(c, cy + 1 < opsin.ysize() ? cy + 1 : cy); } auto compute_laplacian_scalar = [&](size_t x) { size_t cx = x + bx0 * N - 2; const size_t prevX = cx >= 1 ? cx - 1 : cx; const size_t nextX = cx + 1 < opsin.xsize() ? cx + 1 : cx; float sumsqr = 0; for (size_t c = 0; c < 3; c++) { float laplacian = kChannelWeights[c] * in_row[c][cx] + kChannelWeightsLapNeg[c] * (in_row[c][prevX] + in_row[c][nextX] + in_row_b[c][prevX] + in_row_b[c][cx] + in_row_b[c][nextX] + in_row_t[c][prevX] + in_row_t[c][cx] + in_row_t[c][nextX]); sumsqr += laplacian * laplacian; } laplacian_sqrsum_row[x] = sumsqr; }; size_t x = x0; for (; x + bx0 * N < 3; x++) { compute_laplacian_scalar(x); } // Interior. One extra pixel of border as the last pixel is special. for (; x + Lanes(df) <= x1 && x + Lanes(df) + bx0 * N - 1 <= opsin.xsize(); x += Lanes(df)) { size_t cx = x + bx0 * N - 2; auto sumsqr = Zero(df); for (size_t c = 0; c < 3; c++) { auto laplacian = LoadU(df, in_row[c] + cx) * Set(df, kChannelWeights[c]); auto sum_oth0 = LoadU(df, in_row[c] + cx - 1); auto sum_oth1 = LoadU(df, in_row[c] + cx + 1); auto sum_oth2 = LoadU(df, in_row_t[c] + cx - 1); auto sum_oth3 = LoadU(df, in_row_t[c] + cx); sum_oth0 += LoadU(df, in_row_t[c] + cx + 1); sum_oth1 += LoadU(df, in_row_b[c] + cx - 1); sum_oth2 += LoadU(df, in_row_b[c] + cx); sum_oth3 += LoadU(df, in_row_b[c] + cx + 1); sum_oth0 += sum_oth1; sum_oth2 += sum_oth3; sum_oth0 += sum_oth2; laplacian = MulAdd(Set(df, kChannelWeightsLapNeg[c]), sum_oth0, laplacian); sumsqr = MulAdd(laplacian, laplacian, sumsqr); } StoreU(sumsqr, df, laplacian_sqrsum_row + x); } for (; x < x1; x++) { compute_laplacian_scalar(x); } } HWY_CAPPED(float, 4) df4; // Calculate the L2 of the 3x3 Laplacian in 4x4 blocks within the area // of the integral transform. Sample them within the integral transform // with two offsets (0,0) and (-2, -2) pixels (sqrsum_00 and sqrsum_22, // respectively). ImageF& sqrsum_00 = temp_image->sqrsum_00; size_t sqrsum_00_stride = sqrsum_00.PixelsPerRow(); float* JXL_RESTRICT sqrsum_00_row = sqrsum_00.Row(0); for (size_t y = 0; y < (by1 - by0) * 2; y++) { const float* JXL_RESTRICT rows_in[4]; for (size_t iy = 0; iy < 4; iy++) { rows_in[iy] = laplacian_sqrsum.ConstRow(y * 4 + iy + 2); } float* JXL_RESTRICT row_out = sqrsum_00_row + y * sqrsum_00_stride; for (size_t x = 0; x < (bx1 - bx0) * 2; x++) { auto sum = Zero(df4); for (size_t iy = 0; iy < 4; iy++) { for (size_t ix = 0; ix < 4; ix += Lanes(df4)) { sum += LoadU(df4, rows_in[iy] + x * 4 + ix + 2); } } row_out[x] = GetLane(Sqrt(SumOfLanes(df4, sum))) * (1.0f / 4.0f); } } // Indexing iy and ix is a bit tricky as we include a 2 pixel border // around the block for evenness calculations. This is similar to what // we did in guetzli for the observability of artefacts, except there // the element is a sliding 5x5, not sparsely sampled 4x4 box like here. ImageF& sqrsum_22 = temp_image->sqrsum_22; size_t sqrsum_22_stride = sqrsum_22.PixelsPerRow(); float* JXL_RESTRICT sqrsum_22_row = sqrsum_22.Row(0); for (size_t y = 0; y < (by1 - by0) * 2 + 1; y++) { const float* JXL_RESTRICT rows_in[4]; for (size_t iy = 0; iy < 4; iy++) { rows_in[iy] = laplacian_sqrsum.ConstRow(y * 4 + iy); } float* JXL_RESTRICT row_out = sqrsum_22_row + y * sqrsum_22_stride; // ignore pixels outside the image. // Y coordinates are relative to by0*8+y*4. size_t sy = y * 4 + by0 * 8 > 0 ? 0 : 2; size_t ey = y * 4 + by0 * 8 + 4 <= opsin.ysize() + 2 ? 4 : opsin.ysize() - y * 4 - by0 * 8 + 2; for (size_t x = 0; x < (bx1 - bx0) * 2 + 1; x++) { // ignore pixels outside the image. // X coordinates are relative to bx0*8. size_t sx = x * 4 + bx0 * 8 > 0 ? x * 4 : x * 4 + 2; size_t ex = x * 4 + bx0 * 8 + 4 <= opsin.xsize() + 2 ? x * 4 + 4 : opsin.xsize() - bx0 * 8 + 2; if (ex - sx == 4 && ey - sy == 4) { auto sum = Zero(df4); for (size_t iy = 0; iy < 4; iy++) { for (size_t ix = 0; ix < 4; ix += Lanes(df4)) { sum += Load(df4, rows_in[iy] + sx + ix); } } row_out[x] = GetLane(Sqrt(SumOfLanes(df4, sum))) * (1.0f / 4.0f); } else { float sum = 0; for (size_t iy = sy; iy < ey; iy++) { for (size_t ix = sx; ix < ex; ix++) { sum += rows_in[iy][ix]; } } row_out[x] = std::sqrt(sum / ((ex - sx) * (ey - sy))); } } } for (size_t by = by0; by < by1; by++) { AcStrategyRow acs_row = enc_state->shared.ac_strategy.ConstRow(by); uint8_t* JXL_RESTRICT out_row = epf_sharpness->Row(by); float* JXL_RESTRICT quant_row = quant->Row(by); for (size_t bx = bx0; bx < bx1; bx++) { AcStrategy acs = acs_row[bx]; if (!acs.IsFirstBlock()) continue; // The errors are going to be linear to the quantization value in this // locality. We only have access to the initial quant field here. float quant_val = 1.0f / quant_row[bx]; const auto sq00 = [&](size_t y, size_t x) { return sqrsum_00_row[((by - by0) * 2 + y) * sqrsum_00_stride + (bx - bx0) * 2 + x]; }; const auto sq22 = [&](size_t y, size_t x) { return sqrsum_22_row[((by - by0) * 2 + y) * sqrsum_22_stride + (bx - bx0) * 2 + x]; }; float sqrsum_integral_transform = 0; for (size_t iy = 0; iy < acs.covered_blocks_y() * 2; iy++) { for (size_t ix = 0; ix < acs.covered_blocks_x() * 2; ix++) { sqrsum_integral_transform += sq00(iy, ix) * sq00(iy, ix); } } sqrsum_integral_transform /= 4 * acs.covered_blocks_x() * acs.covered_blocks_y(); sqrsum_integral_transform = std::sqrt(sqrsum_integral_transform); // If masking is high or amplitude of the artefacts is low, then no // smoothing is needed. for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) { for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) { // Five 4x4 blocks for masking estimation, all within the // 8x8 area. float minval_1 = std::min(sq00(2 * iy + 0, 2 * ix + 0), sq00(2 * iy + 0, 2 * ix + 1)); float minval_2 = std::min(sq00(2 * iy + 1, 2 * ix + 0), sq00(2 * iy + 1, 2 * ix + 1)); float minval = std::min(minval_1, minval_2); minval = std::min(minval, sq22(2 * iy + 1, 2 * ix + 1)); // Nine more 4x4 blocks for masking estimation, includes // the 2 pixel area around the 8x8 block being controlled. float minval2_1 = std::min(sq22(2 * iy + 0, 2 * ix + 0), sq22(2 * iy + 0, 2 * ix + 1)); float minval2_2 = std::min(sq22(2 * iy + 0, 2 * ix + 2), sq22(2 * iy + 1, 2 * ix + 0)); float minval2_3 = std::min(sq22(2 * iy + 1, 2 * ix + 1), sq22(2 * iy + 1, 2 * ix + 2)); float minval2_4 = std::min(sq22(2 * iy + 2, 2 * ix + 0), sq22(2 * iy + 2, 2 * ix + 1)); float minval2_5 = std::min(minval2_1, minval2_2); float minval2_6 = std::min(minval2_3, minval2_4); float minval2 = std::min(minval2_5, minval2_6); minval2 = std::min(minval2, sq22(2 * iy + 2, 2 * ix + 2)); float minval3 = std::min(minval, minval2); minval *= 0.125f; minval += 0.625f * minval3; minval += 0.125f * std::min(1.5f * minval3, sq22(2 * iy + 1, 2 * ix + 1)); minval += 0.125f * minval2; // Larger kBias, less smoothing for low intensity changes. float kDeltaLimit = 3.2; float bias = 0.0625f * quant_val; float delta = (sqrsum_integral_transform + (kDeltaLimit + 0.05) * bias) / (minval + bias); int out = 4; if (delta > kDeltaLimit) { out = 4; // smooth } else { out = 0; } // 'threshold' is separate from 'bias' for easier tuning of these // heuristics. float threshold = 0.0625f * quant_val; const float kSmoothLimit = 0.085f; float smooth = 0.20f * (sq00(2 * iy + 0, 2 * ix + 0) + sq00(2 * iy + 0, 2 * ix + 1) + sq00(2 * iy + 1, 2 * ix + 0) + sq00(2 * iy + 1, 2 * ix + 1) + minval); if (smooth < kSmoothLimit * threshold) { out = 4; } out_row[bx + sharpness_stride * iy + ix] = out; } } } } } } // namespace // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(ProcessTile); void ArControlFieldHeuristics::RunRect(const Rect& block_rect, const Image3F& opsin, PassesEncoderState* enc_state, size_t thread) { HWY_DYNAMIC_DISPATCH(ProcessTile) (opsin, enc_state, block_rect, &temp_images[thread]); } } // namespace jxl #endif