// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_cluster.h" #include #include #include #include #include #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/enc_cluster.cc" #include #include #include "lib/jxl/ac_context.h" #include "lib/jxl/base/profiler.h" #include "lib/jxl/fast_math-inl.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { template V Entropy(V count, V inv_total, V total) { const HWY_CAPPED(float, Histogram::kRounding) d; const auto zero = Set(d, 0.0f); return IfThenZeroElse(count == total, zero - count * FastLog2f(d, inv_total * count)); } void HistogramEntropy(const Histogram& a) { a.entropy_ = 0.0f; if (a.total_count_ == 0) return; const HWY_CAPPED(float, Histogram::kRounding) df; const HWY_CAPPED(int32_t, Histogram::kRounding) di; const auto inv_tot = Set(df, 1.0f / a.total_count_); auto entropy_lanes = Zero(df); auto total = Set(df, a.total_count_); for (size_t i = 0; i < a.data_.size(); i += Lanes(di)) { const auto counts = LoadU(di, &a.data_[i]); entropy_lanes += Entropy(ConvertTo(df, counts), inv_tot, total); } a.entropy_ += GetLane(SumOfLanes(df, entropy_lanes)); } float HistogramDistance(const Histogram& a, const Histogram& b) { if (a.total_count_ == 0 || b.total_count_ == 0) return 0; const HWY_CAPPED(float, Histogram::kRounding) df; const HWY_CAPPED(int32_t, Histogram::kRounding) di; const auto inv_tot = Set(df, 1.0f / (a.total_count_ + b.total_count_)); auto distance_lanes = Zero(df); auto total = Set(df, a.total_count_ + b.total_count_); for (size_t i = 0; i < std::max(a.data_.size(), b.data_.size()); i += Lanes(di)) { const auto a_counts = a.data_.size() > i ? LoadU(di, &a.data_[i]) : Zero(di); const auto b_counts = b.data_.size() > i ? LoadU(di, &b.data_[i]) : Zero(di); const auto counts = ConvertTo(df, a_counts + b_counts); distance_lanes += Entropy(counts, inv_tot, total); } const float total_distance = GetLane(SumOfLanes(df, distance_lanes)); return total_distance - a.entropy_ - b.entropy_; } // First step of a k-means clustering with a fancy distance metric. void FastClusterHistograms(const std::vector& in, const size_t num_contexts_in, size_t max_histograms, float min_distance, std::vector* out, std::vector* histogram_symbols) { PROFILER_FUNC; size_t largest_idx = 0; std::vector nonempty_histograms; nonempty_histograms.reserve(in.size()); for (size_t i = 0; i < num_contexts_in; i++) { if (in[i].total_count_ == 0) continue; HistogramEntropy(in[i]); if (in[i].total_count_ > in[largest_idx].total_count_) { largest_idx = i; } nonempty_histograms.push_back(i); } // No symbols. if (nonempty_histograms.empty()) { out->resize(1); histogram_symbols->clear(); histogram_symbols->resize(in.size(), 0); return; } largest_idx = std::find(nonempty_histograms.begin(), nonempty_histograms.end(), largest_idx) - nonempty_histograms.begin(); size_t num_contexts = nonempty_histograms.size(); out->clear(); out->reserve(max_histograms); std::vector dists(num_contexts, std::numeric_limits::max()); histogram_symbols->clear(); histogram_symbols->resize(in.size(), max_histograms); while (out->size() < max_histograms && out->size() < num_contexts) { (*histogram_symbols)[nonempty_histograms[largest_idx]] = out->size(); out->push_back(in[nonempty_histograms[largest_idx]]); largest_idx = 0; for (size_t i = 0; i < num_contexts; i++) { dists[i] = std::min( HistogramDistance(in[nonempty_histograms[i]], out->back()), dists[i]); // Avoid repeating histograms if ((*histogram_symbols)[nonempty_histograms[i]] != max_histograms) { continue; } if (dists[i] > dists[largest_idx]) largest_idx = i; } if (dists[largest_idx] < min_distance) break; } for (size_t i = 0; i < num_contexts_in; i++) { if ((*histogram_symbols)[i] != max_histograms) continue; if (in[i].total_count_ == 0) { (*histogram_symbols)[i] = 0; continue; } size_t best = 0; float best_dist = HistogramDistance(in[i], (*out)[best]); for (size_t j = 1; j < out->size(); j++) { float dist = HistogramDistance(in[i], (*out)[j]); if (dist < best_dist) { best = j; best_dist = dist; } } (*out)[best].AddHistogram(in[i]); HistogramEntropy((*out)[best]); (*histogram_symbols)[i] = best; } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(FastClusterHistograms); // Local function HWY_EXPORT(HistogramEntropy); // Local function float Histogram::ShannonEntropy() const { HWY_DYNAMIC_DISPATCH(HistogramEntropy)(*this); return entropy_; } namespace { // ----------------------------------------------------------------------------- // Histogram refinement // Reorder histograms in *out so that the new symbols in *symbols come in // increasing order. void HistogramReindex(std::vector* out, std::vector* symbols) { std::vector tmp(*out); std::map new_index; int next_index = 0; for (uint32_t symbol : *symbols) { if (new_index.find(symbol) == new_index.end()) { new_index[symbol] = next_index; (*out)[next_index] = tmp[symbol]; ++next_index; } } out->resize(next_index); for (uint32_t& symbol : *symbols) { symbol = new_index[symbol]; } } } // namespace // Clusters similar histograms in 'in' together, the selected histograms are // placed in 'out', and for each index in 'in', *histogram_symbols will // indicate which of the 'out' histograms is the best approximation. void ClusterHistograms(const HistogramParams params, const std::vector& in, const size_t num_contexts, size_t max_histograms, std::vector* out, std::vector* histogram_symbols) { constexpr float kMinDistanceForDistinctFast = 64.0f; constexpr float kMinDistanceForDistinctBest = 16.0f; max_histograms = std::min(max_histograms, params.max_histograms); if (params.clustering == HistogramParams::ClusteringType::kFastest) { HWY_DYNAMIC_DISPATCH(FastClusterHistograms) (in, num_contexts, 4, kMinDistanceForDistinctFast, out, histogram_symbols); } else if (params.clustering == HistogramParams::ClusteringType::kFast) { HWY_DYNAMIC_DISPATCH(FastClusterHistograms) (in, num_contexts, max_histograms, kMinDistanceForDistinctFast, out, histogram_symbols); } else { PROFILER_FUNC; HWY_DYNAMIC_DISPATCH(FastClusterHistograms) (in, num_contexts, max_histograms, kMinDistanceForDistinctBest, out, histogram_symbols); for (size_t i = 0; i < out->size(); i++) { (*out)[i].entropy_ = ANSPopulationCost((*out)[i].data_.data(), (*out)[i].data_.size()); } uint32_t next_version = 2; std::vector version(out->size(), 1); std::vector renumbering(out->size()); std::iota(renumbering.begin(), renumbering.end(), 0); // Try to pair up clusters if doing so reduces the total cost. struct HistogramPair { // validity of a pair: p.version == max(version[i], version[j]) float cost; uint32_t first; uint32_t second; uint32_t version; // We use > because priority queues sort in *decreasing* order, but we // want lower cost elements to appear first. bool operator<(const HistogramPair& other) const { return std::make_tuple(cost, first, second, version) > std::make_tuple(other.cost, other.first, other.second, other.version); } }; // Create list of all pairs by increasing merging cost. std::priority_queue pairs_to_merge; for (uint32_t i = 0; i < out->size(); i++) { for (uint32_t j = i + 1; j < out->size(); j++) { Histogram histo; histo.AddHistogram((*out)[i]); histo.AddHistogram((*out)[j]); float cost = ANSPopulationCost(histo.data_.data(), histo.data_.size()) - (*out)[i].entropy_ - (*out)[j].entropy_; // Avoid enqueueing pairs that are not advantageous to merge. if (cost >= 0) continue; pairs_to_merge.push( HistogramPair{cost, i, j, std::max(version[i], version[j])}); } } // Merge the best pair to merge, add new pairs that get formed as a // consequence. while (!pairs_to_merge.empty()) { uint32_t first = pairs_to_merge.top().first; uint32_t second = pairs_to_merge.top().second; uint32_t ver = pairs_to_merge.top().version; pairs_to_merge.pop(); if (ver != std::max(version[first], version[second]) || version[first] == 0 || version[second] == 0) { continue; } (*out)[first].AddHistogram((*out)[second]); (*out)[first].entropy_ = ANSPopulationCost((*out)[first].data_.data(), (*out)[first].data_.size()); for (size_t i = 0; i < renumbering.size(); i++) { if (renumbering[i] == second) { renumbering[i] = first; } } version[second] = 0; version[first] = next_version++; for (uint32_t j = 0; j < out->size(); j++) { if (j == first) continue; if (version[j] == 0) continue; Histogram histo; histo.AddHistogram((*out)[first]); histo.AddHistogram((*out)[j]); float cost = ANSPopulationCost(histo.data_.data(), histo.data_.size()) - (*out)[first].entropy_ - (*out)[j].entropy_; // Avoid enqueueing pairs that are not advantageous to merge. if (cost >= 0) continue; pairs_to_merge.push( HistogramPair{cost, std::min(first, j), std::max(first, j), std::max(version[first], version[j])}); } } std::vector reverse_renumbering(out->size(), -1); size_t num_alive = 0; for (size_t i = 0; i < out->size(); i++) { if (version[i] == 0) continue; (*out)[num_alive++] = (*out)[i]; reverse_renumbering[i] = num_alive - 1; } out->resize(num_alive); for (size_t i = 0; i < histogram_symbols->size(); i++) { (*histogram_symbols)[i] = reverse_renumbering[renumbering[(*histogram_symbols)[i]]]; } } // Convert the context map to a canonical form. HistogramReindex(out, histogram_symbols); } } // namespace jxl #endif // HWY_ONCE