// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_entropy_coder.h" #include #include #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/enc_entropy_coder.cc" #include #include #include "lib/jxl/ac_context.h" #include "lib/jxl/ac_strategy.h" #include "lib/jxl/base/bits.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/profiler.h" #include "lib/jxl/base/status.h" #include "lib/jxl/coeff_order.h" #include "lib/jxl/coeff_order_fwd.h" #include "lib/jxl/common.h" #include "lib/jxl/dec_ans.h" #include "lib/jxl/dec_bit_reader.h" #include "lib/jxl/dec_context_map.h" #include "lib/jxl/entropy_coder.h" #include "lib/jxl/epf.h" #include "lib/jxl/image.h" #include "lib/jxl/image_ops.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // Returns number of non-zero coefficients (but skip LLF). // We cannot rely on block[] being all-zero bits, so first truncate to integer. // Also writes the per-8x8 block nzeros starting at nzeros_pos. int32_t NumNonZeroExceptLLF(const size_t cx, const size_t cy, const AcStrategy acs, const size_t covered_blocks, const size_t log2_covered_blocks, const int32_t* JXL_RESTRICT block, const size_t nzeros_stride, int32_t* JXL_RESTRICT nzeros_pos) { const HWY_CAPPED(int32_t, kBlockDim) di; const auto zero = Zero(di); // Add FF..FF for every zero coefficient, negate to get #zeros. auto neg_sum_zero = zero; { // Mask sufficient for one row of coefficients. HWY_ALIGN const int32_t llf_mask_lanes[AcStrategy::kMaxCoeffBlocks * (1 + kBlockDim)] = { -1, -1, -1, -1}; // First cx=1,2,4 elements are FF..FF, others 0. const int32_t* llf_mask_pos = llf_mask_lanes + AcStrategy::kMaxCoeffBlocks - cx; // Rows with LLF: mask out the LLF for (size_t y = 0; y < cy; y++) { for (size_t x = 0; x < cx * kBlockDim; x += Lanes(di)) { const auto llf_mask = LoadU(di, llf_mask_pos + x); // LLF counts as zero so we don't include it in nzeros. const auto coef = AndNot(llf_mask, Load(di, &block[y * cx * kBlockDim + x])); neg_sum_zero += VecFromMask(di, coef == zero); } } } // Remaining rows: no mask for (size_t y = cy; y < cy * kBlockDim; y++) { for (size_t x = 0; x < cx * kBlockDim; x += Lanes(di)) { const auto coef = Load(di, &block[y * cx * kBlockDim + x]); neg_sum_zero += VecFromMask(di, coef == zero); } } // We want area - sum_zero, add because neg_sum_zero is already negated. const int32_t nzeros = int32_t(cx * cy * kDCTBlockSize) + GetLane(SumOfLanes(di, neg_sum_zero)); const int32_t shifted_nzeros = static_cast( (nzeros + covered_blocks - 1) >> log2_covered_blocks); // Need non-canonicalized dimensions! for (size_t y = 0; y < acs.covered_blocks_y(); y++) { for (size_t x = 0; x < acs.covered_blocks_x(); x++) { nzeros_pos[x + y * nzeros_stride] = shifted_nzeros; } } return nzeros; } // Specialization for 8x8, where only top-left is LLF/DC. // About 1% overall speedup vs. NumNonZeroExceptLLF. int32_t NumNonZero8x8ExceptDC(const int32_t* JXL_RESTRICT block, int32_t* JXL_RESTRICT nzeros_pos) { const HWY_CAPPED(int32_t, kBlockDim) di; const auto zero = Zero(di); // Add FF..FF for every zero coefficient, negate to get #zeros. auto neg_sum_zero = zero; { // First row has DC, so mask const size_t y = 0; HWY_ALIGN const int32_t dc_mask_lanes[kBlockDim] = {-1}; for (size_t x = 0; x < kBlockDim; x += Lanes(di)) { const auto dc_mask = Load(di, dc_mask_lanes + x); // DC counts as zero so we don't include it in nzeros. const auto coef = AndNot(dc_mask, Load(di, &block[y * kBlockDim + x])); neg_sum_zero += VecFromMask(di, coef == zero); } } // Remaining rows: no mask for (size_t y = 1; y < kBlockDim; y++) { for (size_t x = 0; x < kBlockDim; x += Lanes(di)) { const auto coef = Load(di, &block[y * kBlockDim + x]); neg_sum_zero += VecFromMask(di, coef == zero); } } // We want 64 - sum_zero, add because neg_sum_zero is already negated. const int32_t nzeros = int32_t(kDCTBlockSize) + GetLane(SumOfLanes(di, neg_sum_zero)); *nzeros_pos = nzeros; return nzeros; } // The number of nonzeros of each block is predicted from the top and the left // blocks, with opportune scaling to take into account the number of blocks of // each strategy. The predicted number of nonzeros divided by two is used as a // context; if this number is above 63, a specific context is used. If the // number of nonzeros of a strategy is above 63, it is written directly using a // fixed number of bits (that depends on the size of the strategy). void TokenizeCoefficients(const coeff_order_t* JXL_RESTRICT orders, const Rect& rect, const int32_t* JXL_RESTRICT* JXL_RESTRICT ac_rows, const AcStrategyImage& ac_strategy, YCbCrChromaSubsampling cs, Image3I* JXL_RESTRICT tmp_num_nzeroes, std::vector* JXL_RESTRICT output, const ImageB& qdc, const ImageI& qf, const BlockCtxMap& block_ctx_map) { const size_t xsize_blocks = rect.xsize(); const size_t ysize_blocks = rect.ysize(); // TODO(user): update the estimate: usually less coefficients are used. output->reserve(output->size() + 3 * xsize_blocks * ysize_blocks * kDCTBlockSize); size_t offset[3] = {}; const size_t nzeros_stride = tmp_num_nzeroes->PixelsPerRow(); for (size_t by = 0; by < ysize_blocks; ++by) { size_t sby[3] = {by >> cs.VShift(0), by >> cs.VShift(1), by >> cs.VShift(2)}; int32_t* JXL_RESTRICT row_nzeros[3] = { tmp_num_nzeroes->PlaneRow(0, sby[0]), tmp_num_nzeroes->PlaneRow(1, sby[1]), tmp_num_nzeroes->PlaneRow(2, sby[2]), }; const int32_t* JXL_RESTRICT row_nzeros_top[3] = { sby[0] == 0 ? nullptr : tmp_num_nzeroes->ConstPlaneRow(0, sby[0] - 1), sby[1] == 0 ? nullptr : tmp_num_nzeroes->ConstPlaneRow(1, sby[1] - 1), sby[2] == 0 ? nullptr : tmp_num_nzeroes->ConstPlaneRow(2, sby[2] - 1), }; const uint8_t* JXL_RESTRICT row_qdc = qdc.ConstRow(rect.y0() + by) + rect.x0(); const int32_t* JXL_RESTRICT row_qf = rect.ConstRow(qf, by); AcStrategyRow acs_row = ac_strategy.ConstRow(rect, by); for (size_t bx = 0; bx < xsize_blocks; ++bx) { AcStrategy acs = acs_row[bx]; if (!acs.IsFirstBlock()) continue; size_t sbx[3] = {bx >> cs.HShift(0), bx >> cs.HShift(1), bx >> cs.HShift(2)}; size_t cx = acs.covered_blocks_x(); size_t cy = acs.covered_blocks_y(); const size_t covered_blocks = cx * cy; // = #LLF coefficients const size_t log2_covered_blocks = Num0BitsBelowLS1Bit_Nonzero(covered_blocks); const size_t size = covered_blocks * kDCTBlockSize; CoefficientLayout(&cy, &cx); // swap cx/cy to canonical order for (int c : {1, 0, 2}) { if (sbx[c] << cs.HShift(c) != bx) continue; if (sby[c] << cs.VShift(c) != by) continue; const int32_t* JXL_RESTRICT block = ac_rows[c] + offset[c]; int32_t nzeros = (covered_blocks == 1) ? NumNonZero8x8ExceptDC(block, row_nzeros[c] + sbx[c]) : NumNonZeroExceptLLF(cx, cy, acs, covered_blocks, log2_covered_blocks, block, nzeros_stride, row_nzeros[c] + sbx[c]); int ord = kStrategyOrder[acs.RawStrategy()]; const coeff_order_t* JXL_RESTRICT order = &orders[CoeffOrderOffset(ord, c)]; int32_t predicted_nzeros = PredictFromTopAndLeft(row_nzeros_top[c], row_nzeros[c], sbx[c], 32); size_t block_ctx = block_ctx_map.Context(row_qdc[bx], row_qf[sbx[c]], ord, c); const int32_t nzero_ctx = block_ctx_map.NonZeroContext(predicted_nzeros, block_ctx); output->emplace_back(nzero_ctx, nzeros); const size_t histo_offset = block_ctx_map.ZeroDensityContextsOffset(block_ctx); // Skip LLF. size_t prev = (nzeros > static_cast(size / 16) ? 0 : 1); for (size_t k = covered_blocks; k < size && nzeros != 0; ++k) { int32_t coeff = block[order[k]]; size_t ctx = histo_offset + ZeroDensityContext(nzeros, k, covered_blocks, log2_covered_blocks, prev); uint32_t u_coeff = PackSigned(coeff); output->emplace_back(ctx, u_coeff); prev = coeff != 0; nzeros -= prev; } JXL_DASSERT(nzeros == 0); offset[c] += size; } } } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(TokenizeCoefficients); void TokenizeCoefficients(const coeff_order_t* JXL_RESTRICT orders, const Rect& rect, const int32_t* JXL_RESTRICT* JXL_RESTRICT ac_rows, const AcStrategyImage& ac_strategy, YCbCrChromaSubsampling cs, Image3I* JXL_RESTRICT tmp_num_nzeroes, std::vector* JXL_RESTRICT output, const ImageB& qdc, const ImageI& qf, const BlockCtxMap& block_ctx_map) { return HWY_DYNAMIC_DISPATCH(TokenizeCoefficients)( orders, rect, ac_rows, ac_strategy, cs, tmp_num_nzeroes, output, qdc, qf, block_ctx_map); } } // namespace jxl #endif // HWY_ONCE