// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_heuristics.h" #include #include #include #include #include #include "lib/jxl/enc_ac_strategy.h" #include "lib/jxl/enc_adaptive_quantization.h" #include "lib/jxl/enc_ar_control_field.h" #include "lib/jxl/enc_cache.h" #include "lib/jxl/enc_chroma_from_luma.h" #include "lib/jxl/enc_modular.h" #include "lib/jxl/enc_noise.h" #include "lib/jxl/enc_patch_dictionary.h" #include "lib/jxl/enc_photon_noise.h" #include "lib/jxl/enc_quant_weights.h" #include "lib/jxl/enc_splines.h" #include "lib/jxl/enc_xyb.h" #include "lib/jxl/gaborish.h" namespace jxl { namespace { void FindBestBlockEntropyModel(PassesEncoderState& enc_state) { if (enc_state.cparams.decoding_speed_tier >= 1) { static constexpr uint8_t kSimpleCtxMap[] = { // Cluster all blocks together 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // }; static_assert( 3 * kNumOrders == sizeof(kSimpleCtxMap) / sizeof *kSimpleCtxMap, "Update simple context map"); auto bcm = enc_state.shared.block_ctx_map; bcm.ctx_map.assign(std::begin(kSimpleCtxMap), std::end(kSimpleCtxMap)); bcm.num_ctxs = 2; bcm.num_dc_ctxs = 1; return; } if (enc_state.cparams.speed_tier >= SpeedTier::kFalcon) { return; } const ImageI& rqf = enc_state.shared.raw_quant_field; // No need to change context modeling for small images. size_t tot = rqf.xsize() * rqf.ysize(); size_t size_for_ctx_model = (1 << 10) * enc_state.cparams.butteraugli_distance; if (tot < size_for_ctx_model) return; struct OccCounters { // count the occurrences of each qf value and each strategy type. OccCounters(const ImageI& rqf, const AcStrategyImage& ac_strategy) { for (size_t y = 0; y < rqf.ysize(); y++) { const int32_t* qf_row = rqf.Row(y); AcStrategyRow acs_row = ac_strategy.ConstRow(y); for (size_t x = 0; x < rqf.xsize(); x++) { int ord = kStrategyOrder[acs_row[x].RawStrategy()]; int qf = qf_row[x] - 1; qf_counts[qf]++; qf_ord_counts[ord][qf]++; ord_counts[ord]++; } } } size_t qf_counts[256] = {}; size_t qf_ord_counts[kNumOrders][256] = {}; size_t ord_counts[kNumOrders] = {}; }; // The OccCounters struct is too big to allocate on the stack. std::unique_ptr counters( new OccCounters(rqf, enc_state.shared.ac_strategy)); // Splitting the context model according to the quantization field seems to // mostly benefit only large images. size_t size_for_qf_split = (1 << 13) * enc_state.cparams.butteraugli_distance; size_t num_qf_segments = tot < size_for_qf_split ? 1 : 2; std::vector& qft = enc_state.shared.block_ctx_map.qf_thresholds; qft.clear(); // Divide the quant field in up to num_qf_segments segments. size_t cumsum = 0; size_t next = 1; size_t last_cut = 256; size_t cut = tot * next / num_qf_segments; for (uint32_t j = 0; j < 256; j++) { cumsum += counters->qf_counts[j]; if (cumsum > cut) { if (j != 0) { qft.push_back(j); } last_cut = j; while (cumsum > cut) { next++; cut = tot * next / num_qf_segments; } } else if (next > qft.size() + 1) { if (j - 1 == last_cut && j != 0) { qft.push_back(j); } } } // Count the occurrences of each segment. std::vector counts(kNumOrders * (qft.size() + 1)); size_t qft_pos = 0; for (size_t j = 0; j < 256; j++) { if (qft_pos < qft.size() && j == qft[qft_pos]) { qft_pos++; } for (size_t i = 0; i < kNumOrders; i++) { counts[qft_pos + i * (qft.size() + 1)] += counters->qf_ord_counts[i][j]; } } // Repeatedly merge the lowest-count pair. std::vector remap((qft.size() + 1) * kNumOrders); std::iota(remap.begin(), remap.end(), 0); std::vector clusters(remap); size_t nb_clusters = Clamp1((int)(tot / size_for_ctx_model / 2), 2, 9); size_t nb_clusters_chroma = Clamp1((int)(tot / size_for_ctx_model / 3), 1, 5); // This is O(n^2 log n), but n is small. while (clusters.size() > nb_clusters) { std::sort(clusters.begin(), clusters.end(), [&](int a, int b) { return counts[a] > counts[b]; }); counts[clusters[clusters.size() - 2]] += counts[clusters.back()]; counts[clusters.back()] = 0; remap[clusters.back()] = clusters[clusters.size() - 2]; clusters.pop_back(); } for (size_t i = 0; i < remap.size(); i++) { while (remap[remap[i]] != remap[i]) { remap[i] = remap[remap[i]]; } } // Relabel starting from 0. std::vector remap_remap(remap.size(), remap.size()); size_t num = 0; for (size_t i = 0; i < remap.size(); i++) { if (remap_remap[remap[i]] == remap.size()) { remap_remap[remap[i]] = num++; } remap[i] = remap_remap[remap[i]]; } // Write the block context map. auto& ctx_map = enc_state.shared.block_ctx_map.ctx_map; ctx_map = remap; ctx_map.resize(remap.size() * 3); // for chroma, only use up to nb_clusters_chroma separate block contexts // (those for the biggest clusters) for (size_t i = remap.size(); i < remap.size() * 3; i++) { ctx_map[i] = num + Clamp1((int)remap[i % remap.size()], 0, (int)nb_clusters_chroma - 1); } enc_state.shared.block_ctx_map.num_ctxs = *std::max_element(ctx_map.begin(), ctx_map.end()) + 1; } // Returns the target size based on whether bitrate or direct targetsize is // given. size_t TargetSize(const CompressParams& cparams, const FrameDimensions& frame_dim) { if (cparams.target_size > 0) { return cparams.target_size; } if (cparams.target_bitrate > 0.0) { return 0.5 + cparams.target_bitrate * frame_dim.xsize * frame_dim.ysize / kBitsPerByte; } return 0; } } // namespace void FindBestDequantMatrices(const CompressParams& cparams, const Image3F& opsin, ModularFrameEncoder* modular_frame_encoder, DequantMatrices* dequant_matrices) { // TODO(veluca): quant matrices for no-gaborish. // TODO(veluca): heuristics for in-bitstream quant tables. *dequant_matrices = DequantMatrices(); if (cparams.max_error_mode) { // Set numerators of all quantization matrices to constant values. float weights[3][1] = {{1.0f / cparams.max_error[0]}, {1.0f / cparams.max_error[1]}, {1.0f / cparams.max_error[2]}}; DctQuantWeightParams dct_params(weights); std::vector encodings(DequantMatrices::kNum, QuantEncoding::DCT(dct_params)); DequantMatricesSetCustom(dequant_matrices, encodings, modular_frame_encoder); float dc_weights[3] = {1.0f / cparams.max_error[0], 1.0f / cparams.max_error[1], 1.0f / cparams.max_error[2]}; DequantMatricesSetCustomDC(dequant_matrices, dc_weights); } } bool DefaultEncoderHeuristics::HandlesColorConversion( const CompressParams& cparams, const ImageBundle& ib) { return cparams.noise != Override::kOn && cparams.patches != Override::kOn && cparams.speed_tier >= SpeedTier::kWombat && cparams.resampling == 1 && cparams.color_transform == ColorTransform::kXYB && !cparams.modular_mode && !ib.HasAlpha(); } namespace { void StoreMin2(const float v, float& min1, float& min2) { if (v < min2) { if (v < min1) { min2 = min1; min1 = v; } else { min2 = v; } } } void CreateMask(const ImageF& image, ImageF& mask) { for (size_t y = 0; y < image.ysize(); y++) { auto* row_n = y > 0 ? image.Row(y - 1) : image.Row(y); auto* row_in = image.Row(y); auto* row_s = y + 1 < image.ysize() ? image.Row(y + 1) : image.Row(y); auto* row_out = mask.Row(y); for (size_t x = 0; x < image.xsize(); x++) { // Center, west, east, north, south values and their absolute difference float c = row_in[x]; float w = x > 0 ? row_in[x - 1] : row_in[x]; float e = x + 1 < image.xsize() ? row_in[x + 1] : row_in[x]; float n = row_n[x]; float s = row_s[x]; float dw = std::abs(c - w); float de = std::abs(c - e); float dn = std::abs(c - n); float ds = std::abs(c - s); float min = std::numeric_limits::max(); float min2 = std::numeric_limits::max(); StoreMin2(dw, min, min2); StoreMin2(de, min, min2); StoreMin2(dn, min, min2); StoreMin2(ds, min, min2); row_out[x] = min2; } } } // Downsamples the image by a factor of 2 with a kernel that's sharper than // the standard 2x2 box kernel used by DownsampleImage. // The kernel is optimized against the result of the 2x2 upsampling kernel used // by the decoder. Ringing is slightly reduced by clamping the values of the // resulting pixels within certain bounds of a small region in the original // image. void DownsampleImage2_Sharper(const ImageF& input, ImageF* output) { const int64_t kernelx = 12; const int64_t kernely = 12; static const float kernel[144] = { -0.000314256996835, -0.000314256996835, -0.000897597057705, -0.000562751488849, -0.000176807273646, 0.001864627368902, 0.001864627368902, -0.000176807273646, -0.000562751488849, -0.000897597057705, -0.000314256996835, -0.000314256996835, -0.000314256996835, -0.001527942804748, -0.000121760530512, 0.000191123989093, 0.010193185932466, 0.058637519197110, 0.058637519197110, 0.010193185932466, 0.000191123989093, -0.000121760530512, -0.001527942804748, -0.000314256996835, -0.000897597057705, -0.000121760530512, 0.000946363683751, 0.007113577630288, 0.000437956841058, -0.000372823835211, -0.000372823835211, 0.000437956841058, 0.007113577630288, 0.000946363683751, -0.000121760530512, -0.000897597057705, -0.000562751488849, 0.000191123989093, 0.007113577630288, 0.044592622228814, 0.000222278879007, -0.162864473015945, -0.162864473015945, 0.000222278879007, 0.044592622228814, 0.007113577630288, 0.000191123989093, -0.000562751488849, -0.000176807273646, 0.010193185932466, 0.000437956841058, 0.000222278879007, -0.000913092543974, -0.017071696107902, -0.017071696107902, -0.000913092543974, 0.000222278879007, 0.000437956841058, 0.010193185932466, -0.000176807273646, 0.001864627368902, 0.058637519197110, -0.000372823835211, -0.162864473015945, -0.017071696107902, 0.414660099370354, 0.414660099370354, -0.017071696107902, -0.162864473015945, -0.000372823835211, 0.058637519197110, 0.001864627368902, 0.001864627368902, 0.058637519197110, -0.000372823835211, -0.162864473015945, -0.017071696107902, 0.414660099370354, 0.414660099370354, -0.017071696107902, -0.162864473015945, -0.000372823835211, 0.058637519197110, 0.001864627368902, -0.000176807273646, 0.010193185932466, 0.000437956841058, 0.000222278879007, -0.000913092543974, -0.017071696107902, -0.017071696107902, -0.000913092543974, 0.000222278879007, 0.000437956841058, 0.010193185932466, -0.000176807273646, -0.000562751488849, 0.000191123989093, 0.007113577630288, 0.044592622228814, 0.000222278879007, -0.162864473015945, -0.162864473015945, 0.000222278879007, 0.044592622228814, 0.007113577630288, 0.000191123989093, -0.000562751488849, -0.000897597057705, -0.000121760530512, 0.000946363683751, 0.007113577630288, 0.000437956841058, -0.000372823835211, -0.000372823835211, 0.000437956841058, 0.007113577630288, 0.000946363683751, -0.000121760530512, -0.000897597057705, -0.000314256996835, -0.001527942804748, -0.000121760530512, 0.000191123989093, 0.010193185932466, 0.058637519197110, 0.058637519197110, 0.010193185932466, 0.000191123989093, -0.000121760530512, -0.001527942804748, -0.000314256996835, -0.000314256996835, -0.000314256996835, -0.000897597057705, -0.000562751488849, -0.000176807273646, 0.001864627368902, 0.001864627368902, -0.000176807273646, -0.000562751488849, -0.000897597057705, -0.000314256996835, -0.000314256996835}; int64_t xsize = input.xsize(); int64_t ysize = input.ysize(); ImageF box_downsample = CopyImage(input); DownsampleImage(&box_downsample, 2); ImageF mask(box_downsample.xsize(), box_downsample.ysize()); CreateMask(box_downsample, mask); for (size_t y = 0; y < output->ysize(); y++) { float* row_out = output->Row(y); const float* row_in[kernely]; const float* row_mask = mask.Row(y); // get the rows in the support for (size_t ky = 0; ky < kernely; ky++) { int64_t iy = y * 2 + ky - (kernely - 1) / 2; if (iy < 0) iy = 0; if (iy >= ysize) iy = ysize - 1; row_in[ky] = input.Row(iy); } for (size_t x = 0; x < output->xsize(); x++) { // get min and max values of the original image in the support float min = std::numeric_limits::max(); float max = std::numeric_limits::min(); // kernelx - R and kernely - R are the radius of a rectangular region in // which the values of a pixel are bounded to reduce ringing. static constexpr int64_t R = 5; for (int64_t ky = R; ky + R < kernely; ky++) { for (int64_t kx = R; kx + R < kernelx; kx++) { int64_t ix = x * 2 + kx - (kernelx - 1) / 2; if (ix < 0) ix = 0; if (ix >= xsize) ix = xsize - 1; min = std::min(min, row_in[ky][ix]); max = std::max(max, row_in[ky][ix]); } } float sum = 0; for (int64_t ky = 0; ky < kernely; ky++) { for (int64_t kx = 0; kx < kernelx; kx++) { int64_t ix = x * 2 + kx - (kernelx - 1) / 2; if (ix < 0) ix = 0; if (ix >= xsize) ix = xsize - 1; sum += row_in[ky][ix] * kernel[ky * kernelx + kx]; } } row_out[x] = sum; // Clamp the pixel within the value of a small area to prevent ringning. // The mask determines how much to clamp, clamp more to reduce more // ringing in smooth areas, clamp less in noisy areas to get more // sharpness. Higher mask_multiplier gives less clamping, so less // ringing reduction. const constexpr float mask_multiplier = 1; float a = row_mask[x] * mask_multiplier; float clip_min = min - a; float clip_max = max + a; if (row_out[x] < clip_min) { row_out[x] = clip_min; } else if (row_out[x] > clip_max) { row_out[x] = clip_max; } } } } void DownsampleImage2_Sharper(Image3F* opsin) { // Allocate extra space to avoid a reallocation when padding. Image3F downsampled(DivCeil(opsin->xsize(), 2) + kBlockDim, DivCeil(opsin->ysize(), 2) + kBlockDim); downsampled.ShrinkTo(downsampled.xsize() - kBlockDim, downsampled.ysize() - kBlockDim); for (size_t c = 0; c < 3; c++) { DownsampleImage2_Sharper(opsin->Plane(c), &downsampled.Plane(c)); } *opsin = std::move(downsampled); } // The default upsampling kernels used by Upsampler in the decoder. static const constexpr int64_t kSize = 5; static const float kernel00[25] = { -0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f, -0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f, -0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f, -0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f, -0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f, }; static const float kernel01[25] = { -0.00624645f, -0.01610267f, -0.01986694f, -0.01185068f, -0.00213539f, -0.02921014f, 0.00278718f, 0.03777607f, -0.03144731f, -0.01185068f, -0.04022174f, 0.28896755f, 0.56661550f, 0.03777607f, -0.01986694f, -0.03452303f, 0.14111091f, 0.28896755f, 0.00278718f, -0.01610267f, -0.01716200f, -0.03452303f, -0.04022174f, -0.02921014f, -0.00624645f, }; static const float kernel10[25] = { -0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f, -0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f, -0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f, -0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f, -0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f, }; static const float kernel11[25] = { -0.00213539f, -0.01185068f, -0.01986694f, -0.01610267f, -0.00624645f, -0.01185068f, -0.03144731f, 0.03777607f, 0.00278718f, -0.02921014f, -0.01986694f, 0.03777607f, 0.56661550f, 0.28896755f, -0.04022174f, -0.01610267f, 0.00278718f, 0.28896755f, 0.14111091f, -0.03452303f, -0.00624645f, -0.02921014f, -0.04022174f, -0.03452303f, -0.01716200f, }; // Does exactly the same as the Upsampler in dec_upsampler for 2x2 pixels, with // default CustomTransformData. // TODO(lode): use Upsampler instead. However, it requires pre-initialization // and padding on the left side of the image which requires refactoring the // other code using this. static void UpsampleImage(const ImageF& input, ImageF* output) { int64_t xsize = input.xsize(); int64_t ysize = input.ysize(); int64_t xsize2 = output->xsize(); int64_t ysize2 = output->ysize(); for (int64_t y = 0; y < ysize2; y++) { for (int64_t x = 0; x < xsize2; x++) { auto kernel = kernel00; if ((x & 1) && (y & 1)) { kernel = kernel11; } else if (x & 1) { kernel = kernel10; } else if (y & 1) { kernel = kernel01; } float sum = 0; int64_t x2 = x / 2; int64_t y2 = y / 2; // get min and max values of the original image in the support float min = std::numeric_limits::max(); float max = std::numeric_limits::min(); for (int64_t ky = 0; ky < kSize; ky++) { for (int64_t kx = 0; kx < kSize; kx++) { int64_t xi = x2 - kSize / 2 + kx; int64_t yi = y2 - kSize / 2 + ky; if (xi < 0) xi = 0; if (xi >= xsize) xi = input.xsize() - 1; if (yi < 0) yi = 0; if (yi >= ysize) yi = input.ysize() - 1; min = std::min(min, input.Row(yi)[xi]); max = std::max(max, input.Row(yi)[xi]); } } for (int64_t ky = 0; ky < kSize; ky++) { for (int64_t kx = 0; kx < kSize; kx++) { int64_t xi = x2 - kSize / 2 + kx; int64_t yi = y2 - kSize / 2 + ky; if (xi < 0) xi = 0; if (xi >= xsize) xi = input.xsize() - 1; if (yi < 0) yi = 0; if (yi >= ysize) yi = input.ysize() - 1; sum += input.Row(yi)[xi] * kernel[ky * kSize + kx]; } } output->Row(y)[x] = sum; if (output->Row(y)[x] < min) output->Row(y)[x] = min; if (output->Row(y)[x] > max) output->Row(y)[x] = max; } } } // Returns the derivative of Upsampler, with respect to input pixel x2, y2, to // output pixel x, y (ignoring the clamping). float UpsamplerDeriv(int64_t x2, int64_t y2, int64_t x, int64_t y) { auto kernel = kernel00; if ((x & 1) && (y & 1)) { kernel = kernel11; } else if (x & 1) { kernel = kernel10; } else if (y & 1) { kernel = kernel01; } int64_t ix = x / 2; int64_t iy = y / 2; int64_t kx = x2 - ix + kSize / 2; int64_t ky = y2 - iy + kSize / 2; // This should not happen. if (kx < 0 || kx >= kSize || ky < 0 || ky >= kSize) return 0; return kernel[ky * kSize + kx]; } // Apply the derivative of the Upsampler to the input, reversing the effect of // its coefficients. The output image is 2x2 times smaller than the input. void AntiUpsample(const ImageF& input, ImageF* d) { int64_t xsize = input.xsize(); int64_t ysize = input.ysize(); int64_t xsize2 = d->xsize(); int64_t ysize2 = d->ysize(); int64_t k0 = kSize - 1; int64_t k1 = kSize; for (int64_t y2 = 0; y2 < ysize2; ++y2) { auto* row = d->Row(y2); for (int64_t x2 = 0; x2 < xsize2; ++x2) { int64_t x0 = x2 * 2 - k0; if (x0 < 0) x0 = 0; int64_t x1 = x2 * 2 + k1 + 1; if (x1 > xsize) x1 = xsize; int64_t y0 = y2 * 2 - k0; if (y0 < 0) y0 = 0; int64_t y1 = y2 * 2 + k1 + 1; if (y1 > ysize) y1 = ysize; float sum = 0; for (int64_t y = y0; y < y1; ++y) { const auto* row_in = input.Row(y); for (int64_t x = x0; x < x1; ++x) { double deriv = UpsamplerDeriv(x2, y2, x, y); sum += deriv * row_in[x]; } } row[x2] = sum; } } } // Element-wise multiplies two images. template void ElwiseMul(const Plane& image1, const Plane& image2, Plane* out) { const size_t xsize = image1.xsize(); const size_t ysize = image1.ysize(); JXL_CHECK(xsize == image2.xsize()); JXL_CHECK(ysize == image2.ysize()); JXL_CHECK(xsize == out->xsize()); JXL_CHECK(ysize == out->ysize()); for (size_t y = 0; y < ysize; ++y) { const T* const JXL_RESTRICT row1 = image1.Row(y); const T* const JXL_RESTRICT row2 = image2.Row(y); T* const JXL_RESTRICT row_out = out->Row(y); for (size_t x = 0; x < xsize; ++x) { row_out[x] = row1[x] * row2[x]; } } } // Element-wise divides two images. template void ElwiseDiv(const Plane& image1, const Plane& image2, Plane* out) { const size_t xsize = image1.xsize(); const size_t ysize = image1.ysize(); JXL_CHECK(xsize == image2.xsize()); JXL_CHECK(ysize == image2.ysize()); JXL_CHECK(xsize == out->xsize()); JXL_CHECK(ysize == out->ysize()); for (size_t y = 0; y < ysize; ++y) { const T* const JXL_RESTRICT row1 = image1.Row(y); const T* const JXL_RESTRICT row2 = image2.Row(y); T* const JXL_RESTRICT row_out = out->Row(y); for (size_t x = 0; x < xsize; ++x) { row_out[x] = row1[x] / row2[x]; } } } void ReduceRinging(const ImageF& initial, const ImageF& mask, ImageF& down) { int64_t xsize2 = down.xsize(); int64_t ysize2 = down.ysize(); for (size_t y = 0; y < down.ysize(); y++) { const float* row_mask = mask.Row(y); float* row_out = down.Row(y); for (size_t x = 0; x < down.xsize(); x++) { float v = down.Row(y)[x]; float min = initial.Row(y)[x]; float max = initial.Row(y)[x]; for (int64_t yi = -1; yi < 2; yi++) { for (int64_t xi = -1; xi < 2; xi++) { int64_t x2 = (int64_t)x + xi; int64_t y2 = (int64_t)y + yi; if (x2 < 0 || y2 < 0 || x2 >= (int64_t)xsize2 || y2 >= (int64_t)ysize2) continue; min = std::min(min, initial.Row(y2)[x2]); max = std::max(max, initial.Row(y2)[x2]); } } row_out[x] = v; // Clamp the pixel within the value of a small area to prevent ringning. // The mask determines how much to clamp, clamp more to reduce more // ringing in smooth areas, clamp less in noisy areas to get more // sharpness. Higher mask_multiplier gives less clamping, so less // ringing reduction. const constexpr float mask_multiplier = 2; float a = row_mask[x] * mask_multiplier; float clip_min = min - a; float clip_max = max + a; if (row_out[x] < clip_min) row_out[x] = clip_min; if (row_out[x] > clip_max) row_out[x] = clip_max; } } } // TODO(lode): move this to a separate file enc_downsample.cc void DownsampleImage2_Iterative(const ImageF& orig, ImageF* output) { int64_t xsize = orig.xsize(); int64_t ysize = orig.ysize(); int64_t xsize2 = DivCeil(orig.xsize(), 2); int64_t ysize2 = DivCeil(orig.ysize(), 2); ImageF box_downsample = CopyImage(orig); DownsampleImage(&box_downsample, 2); ImageF mask(box_downsample.xsize(), box_downsample.ysize()); CreateMask(box_downsample, mask); output->ShrinkTo(xsize2, ysize2); // Initial result image using the sharper downsampling. // Allocate extra space to avoid a reallocation when padding. ImageF initial(DivCeil(orig.xsize(), 2) + kBlockDim, DivCeil(orig.ysize(), 2) + kBlockDim); initial.ShrinkTo(initial.xsize() - kBlockDim, initial.ysize() - kBlockDim); DownsampleImage2_Sharper(orig, &initial); ImageF down = CopyImage(initial); ImageF up(xsize, ysize); ImageF corr(xsize, ysize); ImageF corr2(xsize2, ysize2); // In the weights map, relatively higher values will allow less ringing but // also less sharpness. With all constant values, it optimizes equally // everywhere. Even in this case, the weights2 computed from // this is still used and differs at the borders of the image. // TODO(lode): Make use of the weights field for anti-ringing and clamping, // the values are all set to 1 for now, but it is intended to be used for // reducing ringing based on the mask, and taking clamping into account. ImageF weights(xsize, ysize); for (size_t y = 0; y < weights.ysize(); y++) { auto* row = weights.Row(y); for (size_t x = 0; x < weights.xsize(); x++) { row[x] = 1; } } ImageF weights2(xsize2, ysize2); AntiUpsample(weights, &weights2); const size_t num_it = 3; for (size_t it = 0; it < num_it; ++it) { UpsampleImage(down, &up); corr = LinComb(1, orig, -1, up); ElwiseMul(corr, weights, &corr); AntiUpsample(corr, &corr2); ElwiseDiv(corr2, weights2, &corr2); down = LinComb(1, down, 1, corr2); } ReduceRinging(initial, mask, down); // can't just use CopyImage, because the output image was prepared with // padding. for (size_t y = 0; y < down.ysize(); y++) { for (size_t x = 0; x < down.xsize(); x++) { float v = down.Row(y)[x]; output->Row(y)[x] = v; } } } void DownsampleImage2_Iterative(Image3F* opsin) { // Allocate extra space to avoid a reallocation when padding. Image3F downsampled(DivCeil(opsin->xsize(), 2) + kBlockDim, DivCeil(opsin->ysize(), 2) + kBlockDim); downsampled.ShrinkTo(downsampled.xsize() - kBlockDim, downsampled.ysize() - kBlockDim); Image3F rgb(opsin->xsize(), opsin->ysize()); OpsinParams opsin_params; // TODO: use the ones that are actually used opsin_params.Init(kDefaultIntensityTarget); OpsinToLinear(*opsin, Rect(rgb), nullptr, &rgb, opsin_params); ImageF mask(opsin->xsize(), opsin->ysize()); ButteraugliParams butter_params; ButteraugliComparator butter(rgb, butter_params); butter.Mask(&mask); ImageF mask_fuzzy(opsin->xsize(), opsin->ysize()); for (size_t c = 0; c < 3; c++) { DownsampleImage2_Iterative(opsin->Plane(c), &downsampled.Plane(c)); } *opsin = std::move(downsampled); } } // namespace Status DefaultEncoderHeuristics::LossyFrameHeuristics( PassesEncoderState* enc_state, ModularFrameEncoder* modular_frame_encoder, const ImageBundle* original_pixels, Image3F* opsin, const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out) { PROFILER_ZONE("JxlLossyFrameHeuristics uninstrumented"); CompressParams& cparams = enc_state->cparams; PassesSharedState& shared = enc_state->shared; // Compute parameters for noise synthesis. if (shared.frame_header.flags & FrameHeader::kNoise) { PROFILER_ZONE("enc GetNoiseParam"); if (cparams.photon_noise_iso == 0) { // Don't start at zero amplitude since adding noise is expensive -- it // significantly slows down decoding, and this is unlikely to // completely go away even with advanced optimizations. After the // kNoiseModelingRampUpDistanceRange we have reached the full level, // i.e. noise is no longer represented by the compressed image, so we // can add full noise by the noise modeling itself. static const float kNoiseModelingRampUpDistanceRange = 0.6; static const float kNoiseLevelAtStartOfRampUp = 0.25; static const float kNoiseRampupStart = 1.0; // TODO(user) test and properly select quality_coef with smooth // filter float quality_coef = 1.0f; const float rampup = (cparams.butteraugli_distance - kNoiseRampupStart) / kNoiseModelingRampUpDistanceRange; if (rampup < 1.0f) { quality_coef = kNoiseLevelAtStartOfRampUp + (1.0f - kNoiseLevelAtStartOfRampUp) * rampup; } if (rampup < 0.0f) { quality_coef = kNoiseRampupStart; } if (!GetNoiseParameter(*opsin, &shared.image_features.noise_params, quality_coef)) { shared.frame_header.flags &= ~FrameHeader::kNoise; } } } if (enc_state->shared.frame_header.upsampling != 1 && !cparams.already_downsampled) { // In VarDCT mode, LossyFrameHeuristics takes care of running downsampling // after noise, if necessary. if (cparams.resampling == 2) { // TODO(lode): use the regular DownsampleImage, or adapt to the custom // coefficients, if there is are custom upscaling coefficients in // CustomTransformData if (cparams.speed_tier <= SpeedTier::kSquirrel) { // TODO(lode): DownsampleImage2_Iterative is currently too slow to // be used for squirrel, make it faster, and / or enable it only for // kitten. DownsampleImage2_Iterative(opsin); } else { DownsampleImage2_Sharper(opsin); } } else { DownsampleImage(opsin, cparams.resampling); } PadImageToBlockMultipleInPlace(opsin); } const FrameDimensions& frame_dim = enc_state->shared.frame_dim; size_t target_size = TargetSize(cparams, frame_dim); size_t opsin_target_size = target_size; if (cparams.target_size > 0 || cparams.target_bitrate > 0.0) { cparams.target_size = opsin_target_size; } else if (cparams.butteraugli_distance < 0) { return JXL_FAILURE("Expected non-negative distance"); } // Find and subtract splines. if (cparams.speed_tier <= SpeedTier::kSquirrel) { // If we do already have them, they were passed upstream to EncodeFile. if (!shared.image_features.splines.HasAny()) { shared.image_features.splines = FindSplines(*opsin); } JXL_RETURN_IF_ERROR(shared.image_features.splines.InitializeDrawCache( opsin->xsize(), opsin->ysize(), shared.cmap)); shared.image_features.splines.SubtractFrom(opsin); } // Find and subtract patches/dots. if (ApplyOverride(cparams.patches, cparams.speed_tier <= SpeedTier::kSquirrel)) { FindBestPatchDictionary(*opsin, enc_state, cms, pool, aux_out); PatchDictionaryEncoder::SubtractFrom(shared.image_features.patches, opsin); } static const float kAcQuant = 0.79f; const float quant_dc = InitialQuantDC(cparams.butteraugli_distance); Quantizer& quantizer = enc_state->shared.quantizer; // We don't know the quant field yet, but for computing the global scale // assuming that it will be the same as for Falcon mode is good enough. quantizer.ComputeGlobalScaleAndQuant( quant_dc, kAcQuant / cparams.butteraugli_distance, 0); // TODO(veluca): we can now run all the code from here to FindBestQuantizer // (excluded) one rect at a time. Do that. // Dependency graph: // // input: either XYB or input image // // input image -> XYB [optional] // XYB -> initial quant field // XYB -> Gaborished XYB // Gaborished XYB -> CfL1 // initial quant field, Gaborished XYB, CfL1 -> ACS // initial quant field, ACS, Gaborished XYB -> EPF control field // initial quant field -> adjusted initial quant field // adjusted initial quant field, ACS -> raw quant field // raw quant field, ACS, Gaborished XYB -> CfL2 // // output: Gaborished XYB, CfL, ACS, raw quant field, EPF control field. ArControlFieldHeuristics ar_heuristics; AcStrategyHeuristics acs_heuristics; CfLHeuristics cfl_heuristics; if (!opsin->xsize()) { JXL_ASSERT(HandlesColorConversion(cparams, *original_pixels)); *opsin = Image3F(RoundUpToBlockDim(original_pixels->xsize()), RoundUpToBlockDim(original_pixels->ysize())); opsin->ShrinkTo(original_pixels->xsize(), original_pixels->ysize()); ToXYB(*original_pixels, pool, opsin, cms, /*linear=*/nullptr); PadImageToBlockMultipleInPlace(opsin); } // Compute an initial estimate of the quantization field. // Call InitialQuantField only in Hare mode or slower. Otherwise, rely // on simple heuristics in FindBestAcStrategy, or set a constant for Falcon // mode. if (cparams.speed_tier > SpeedTier::kHare || cparams.uniform_quant > 0) { enc_state->initial_quant_field = ImageF(shared.frame_dim.xsize_blocks, shared.frame_dim.ysize_blocks); float q = cparams.uniform_quant > 0 ? cparams.uniform_quant : kAcQuant / cparams.butteraugli_distance; FillImage(q, &enc_state->initial_quant_field); } else { // Call this here, as it relies on pre-gaborish values. float butteraugli_distance_for_iqf = cparams.butteraugli_distance; if (!shared.frame_header.loop_filter.gab) { butteraugli_distance_for_iqf *= 0.73f; } enc_state->initial_quant_field = InitialQuantField( butteraugli_distance_for_iqf, *opsin, shared.frame_dim, pool, 1.0f, &enc_state->initial_quant_masking); } // TODO(veluca): do something about animations. // Apply inverse-gaborish. if (shared.frame_header.loop_filter.gab) { GaborishInverse(opsin, 0.9908511000000001f, pool); } FindBestDequantMatrices(cparams, *opsin, modular_frame_encoder, &enc_state->shared.matrices); cfl_heuristics.Init(*opsin); acs_heuristics.Init(*opsin, enc_state); auto process_tile = [&](const uint32_t tid, const size_t thread) { size_t n_enc_tiles = DivCeil(enc_state->shared.frame_dim.xsize_blocks, kEncTileDimInBlocks); size_t tx = tid % n_enc_tiles; size_t ty = tid / n_enc_tiles; size_t by0 = ty * kEncTileDimInBlocks; size_t by1 = std::min((ty + 1) * kEncTileDimInBlocks, enc_state->shared.frame_dim.ysize_blocks); size_t bx0 = tx * kEncTileDimInBlocks; size_t bx1 = std::min((tx + 1) * kEncTileDimInBlocks, enc_state->shared.frame_dim.xsize_blocks); Rect r(bx0, by0, bx1 - bx0, by1 - by0); // For speeds up to Wombat, we only compute the color correlation map // once we know the transform type and the quantization map. if (cparams.speed_tier <= SpeedTier::kSquirrel) { cfl_heuristics.ComputeTile(r, *opsin, enc_state->shared.matrices, /*ac_strategy=*/nullptr, /*quantizer=*/nullptr, /*fast=*/false, thread, &enc_state->shared.cmap); } // Choose block sizes. acs_heuristics.ProcessRect(r); // Choose amount of post-processing smoothing. // TODO(veluca): should this go *after* AdjustQuantField? ar_heuristics.RunRect(r, *opsin, enc_state, thread); // Always set the initial quant field, so we can compute the CfL map with // more accuracy. The initial quant field might change in slower modes, but // adjusting the quant field with butteraugli when all the other encoding // parameters are fixed is likely a more reliable choice anyway. AdjustQuantField(enc_state->shared.ac_strategy, r, &enc_state->initial_quant_field); quantizer.SetQuantFieldRect(enc_state->initial_quant_field, r, &enc_state->shared.raw_quant_field); // Compute a non-default CfL map if we are at Hare speed, or slower. if (cparams.speed_tier <= SpeedTier::kHare) { cfl_heuristics.ComputeTile( r, *opsin, enc_state->shared.matrices, &enc_state->shared.ac_strategy, &enc_state->shared.quantizer, /*fast=*/cparams.speed_tier >= SpeedTier::kWombat, thread, &enc_state->shared.cmap); } }; JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, DivCeil(enc_state->shared.frame_dim.xsize_blocks, kEncTileDimInBlocks) * DivCeil(enc_state->shared.frame_dim.ysize_blocks, kEncTileDimInBlocks), [&](const size_t num_threads) { ar_heuristics.PrepareForThreads(num_threads); cfl_heuristics.PrepareForThreads(num_threads); return true; }, process_tile, "Enc Heuristics")); acs_heuristics.Finalize(aux_out); if (cparams.speed_tier <= SpeedTier::kHare) { cfl_heuristics.ComputeDC(/*fast=*/cparams.speed_tier >= SpeedTier::kWombat, &enc_state->shared.cmap); } // Refine quantization levels. FindBestQuantizer(original_pixels, *opsin, enc_state, cms, pool, aux_out); // Choose a context model that depends on the amount of quantization for AC. if (cparams.speed_tier < SpeedTier::kFalcon) { FindBestBlockEntropyModel(*enc_state); } return true; } } // namespace jxl