// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_icc_codec.h" #include #include #include #include #include "lib/jxl/aux_out.h" #include "lib/jxl/aux_out_fwd.h" #include "lib/jxl/base/byte_order.h" #include "lib/jxl/common.h" #include "lib/jxl/enc_ans.h" #include "lib/jxl/fields.h" #include "lib/jxl/icc_codec_common.h" namespace jxl { namespace { // Unshuffles or de-interleaves bytes, for example with width 2, turns // "AaBbCcDc" into "ABCDabcd", this for example de-interleaves UTF-16 bytes into // first all the high order bytes, then all the low order bytes. // Transposes a matrix of width columns and ceil(size / width) rows. There are // size elements, size may be < width * height, if so the // last elements of the bottom row are missing, the missing spots are // transposed along with the filled spots, and the result has the missing // elements at the bottom of the rightmost column. The input is the input matrix // in scanline order, the output is the result matrix in scanline order, with // missing elements skipped over (this may occur at multiple positions). void Unshuffle(uint8_t* data, size_t size, size_t width) { size_t height = (size + width - 1) / width; // amount of rows of input PaddedBytes result(size); // i = input index, j output index size_t s = 0, j = 0; for (size_t i = 0; i < size; i++) { result[j] = data[i]; j += height; if (j >= size) j = ++s; } for (size_t i = 0; i < size; i++) { data[i] = result[i]; } } // This is performed by the encoder, the encoder must be able to encode any // random byte stream (not just byte streams that are a valid ICC profile), so // an error returned by this function is an implementation error. Status PredictAndShuffle(size_t stride, size_t width, int order, size_t num, const uint8_t* data, size_t size, size_t* pos, PaddedBytes* result) { JXL_RETURN_IF_ERROR(CheckOutOfBounds(*pos, num, size)); // Required by the specification, see decoder. stride * 4 must be < *pos. if (!*pos || ((*pos - 1u) >> 2u) < stride) { return JXL_FAILURE("Invalid stride"); } if (*pos < stride * 4) return JXL_FAILURE("Too large stride"); size_t start = result->size(); for (size_t i = 0; i < num; i++) { uint8_t predicted = LinearPredictICCValue(data, *pos, i, stride, width, order); result->push_back(data[*pos + i] - predicted); } *pos += num; if (width > 1) Unshuffle(result->data() + start, num, width); return true; } } // namespace // Outputs a transformed form of the given icc profile. The result itself is // not particularly smaller than the input data in bytes, but it will be in a // form that is easier to compress (more zeroes, ...) and will compress better // with brotli. Status PredictICC(const uint8_t* icc, size_t size, PaddedBytes* result) { PaddedBytes commands; PaddedBytes data; EncodeVarInt(size, result); // Header PaddedBytes header = ICCInitialHeaderPrediction(); EncodeUint32(0, size, &header); for (size_t i = 0; i < kICCHeaderSize && i < size; i++) { ICCPredictHeader(icc, size, header.data(), i); data.push_back(icc[i] - header[i]); } if (size <= kICCHeaderSize) { EncodeVarInt(0, result); // 0 commands for (size_t i = 0; i < data.size(); i++) { result->push_back(data[i]); } return true; } std::vector tags; std::vector tagstarts; std::vector tagsizes; std::map tagmap; // Tag list size_t pos = kICCHeaderSize; if (pos + 4 <= size) { uint64_t numtags = DecodeUint32(icc, size, pos); pos += 4; EncodeVarInt(numtags + 1, &commands); uint64_t prevtagstart = kICCHeaderSize + numtags * 12; uint32_t prevtagsize = 0; for (size_t i = 0; i < numtags; i++) { if (pos + 12 > size) break; Tag tag = DecodeKeyword(icc, size, pos + 0); uint32_t tagstart = DecodeUint32(icc, size, pos + 4); uint32_t tagsize = DecodeUint32(icc, size, pos + 8); pos += 12; tags.push_back(tag); tagstarts.push_back(tagstart); tagsizes.push_back(tagsize); tagmap[tagstart] = tags.size() - 1; uint8_t tagcode = kCommandTagUnknown; for (size_t j = 0; j < kNumTagStrings; j++) { if (tag == *kTagStrings[j]) { tagcode = j + kCommandTagStringFirst; break; } } if (tag == kRtrcTag && pos + 24 < size) { bool ok = true; ok &= DecodeKeyword(icc, size, pos + 0) == kGtrcTag; ok &= DecodeKeyword(icc, size, pos + 12) == kBtrcTag; if (ok) { for (size_t kk = 0; kk < 8; kk++) { if (icc[pos - 8 + kk] != icc[pos + 4 + kk]) ok = false; if (icc[pos - 8 + kk] != icc[pos + 16 + kk]) ok = false; } } if (ok) { tagcode = kCommandTagTRC; pos += 24; i += 2; } } if (tag == kRxyzTag && pos + 24 < size) { bool ok = true; ok &= DecodeKeyword(icc, size, pos + 0) == kGxyzTag; ok &= DecodeKeyword(icc, size, pos + 12) == kBxyzTag; uint32_t offsetr = tagstart; uint32_t offsetg = DecodeUint32(icc, size, pos + 4); uint32_t offsetb = DecodeUint32(icc, size, pos + 16); uint32_t sizer = tagsize; uint32_t sizeg = DecodeUint32(icc, size, pos + 8); uint32_t sizeb = DecodeUint32(icc, size, pos + 20); ok &= sizer == 20; ok &= sizeg == 20; ok &= sizeb == 20; ok &= (offsetg == offsetr + 20); ok &= (offsetb == offsetr + 40); if (ok) { tagcode = kCommandTagXYZ; pos += 24; i += 2; } } uint8_t command = tagcode; uint64_t predicted_tagstart = prevtagstart + prevtagsize; if (predicted_tagstart != tagstart) command |= kFlagBitOffset; size_t predicted_tagsize = prevtagsize; if (tag == kRxyzTag || tag == kGxyzTag || tag == kBxyzTag || tag == kKxyzTag || tag == kWtptTag || tag == kBkptTag || tag == kLumiTag) { predicted_tagsize = 20; } if (predicted_tagsize != tagsize) command |= kFlagBitSize; commands.push_back(command); if (tagcode == 1) { AppendKeyword(tag, &data); } if (command & kFlagBitOffset) EncodeVarInt(tagstart, &commands); if (command & kFlagBitSize) EncodeVarInt(tagsize, &commands); prevtagstart = tagstart; prevtagsize = tagsize; } } // Indicate end of tag list or varint indicating there's none commands.push_back(0); // Main content // The main content in a valid ICC profile contains tagged elements, with the // tag types (4 letter names) given by the tag list above, and the tag list // pointing to the start and indicating the size of each tagged element. It is // allowed for tagged elements to overlap, e.g. the curve for R, G and B could // all point to the same one. Tag tag; size_t tagstart = 0, tagsize = 0, clutstart = 0; size_t last0 = pos; // This loop appends commands to the output, processing some sub-section of a // current tagged element each time. We need to keep track of the tagtype of // the current element, and update it when we encounter the boundary of a // next one. // It is not required that the input data is a valid ICC profile, if the // encoder does not recognize the data it will still be able to output bytes // but will not predict as well. while (pos <= size) { size_t last1 = pos; PaddedBytes commands_add; PaddedBytes data_add; // This means the loop brought the position beyond the tag end. if (pos > tagstart + tagsize) { tag = {{0, 0, 0, 0}}; // nonsensical value } if (commands_add.empty() && data_add.empty() && tagmap.count(pos) && pos + 4 <= size) { size_t index = tagmap[pos]; tag = DecodeKeyword(icc, size, pos); tagstart = tagstarts[index]; tagsize = tagsizes[index]; if (tag == kMlucTag && pos + tagsize <= size && tagsize > 8 && icc[pos + 4] == 0 && icc[pos + 5] == 0 && icc[pos + 6] == 0 && icc[pos + 7] == 0) { size_t num = tagsize - 8; commands_add.push_back(kCommandTypeStartFirst + 3); pos += 8; commands_add.push_back(kCommandShuffle2); EncodeVarInt(num, &commands_add); size_t start = data_add.size(); for (size_t i = 0; i < num; i++) { data_add.push_back(icc[pos]); pos++; } Unshuffle(data_add.data() + start, num, 2); } if (tag == kCurvTag && pos + tagsize <= size && tagsize > 8 && icc[pos + 4] == 0 && icc[pos + 5] == 0 && icc[pos + 6] == 0 && icc[pos + 7] == 0) { size_t num = tagsize - 8; if (num > 16 && num < (1 << 28) && pos + num <= size && pos > 0) { commands_add.push_back(kCommandTypeStartFirst + 5); pos += 8; commands_add.push_back(kCommandPredict); int order = 1, width = 2, stride = width; commands_add.push_back((order << 2) | (width - 1)); EncodeVarInt(num, &commands_add); JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, size, &pos, &data_add)); } } } if (tag == kMab_Tag || tag == kMba_Tag) { Tag subTag = DecodeKeyword(icc, size, pos); if (pos + 12 < size && (subTag == kCurvTag || subTag == kVcgtTag) && DecodeUint32(icc, size, pos + 4) == 0) { uint32_t num = DecodeUint32(icc, size, pos + 8) * 2; if (num > 16 && num < (1 << 28) && pos + 12 + num <= size) { pos += 12; last1 = pos; commands_add.push_back(kCommandPredict); int order = 1, width = 2, stride = width; commands_add.push_back((order << 2) | (width - 1)); EncodeVarInt(num, &commands_add); JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, size, &pos, &data_add)); } } if (pos == tagstart + 24 && pos + 4 < size) { // Note that this value can be remembered for next iterations of the // loop, so the "pos == clutstart" if below can trigger during a later // iteration. clutstart = tagstart + DecodeUint32(icc, size, pos); } if (pos == clutstart && clutstart + 16 < size) { size_t numi = icc[tagstart + 8]; size_t numo = icc[tagstart + 9]; size_t width = icc[clutstart + 16]; size_t stride = width * numo; size_t num = width * numo; for (size_t i = 0; i < numi && clutstart + i < size; i++) { num *= icc[clutstart + i]; } if ((width == 1 || width == 2) && num > 64 && num < (1 << 28) && pos + num <= size && pos > stride * 4) { commands_add.push_back(kCommandPredict); int order = 1; uint8_t flags = (order << 2) | (width - 1) | (stride == width ? 0 : 16); commands_add.push_back(flags); if (flags & 16) EncodeVarInt(stride, &commands_add); EncodeVarInt(num, &commands_add); JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, size, &pos, &data_add)); } } } if (commands_add.empty() && data_add.empty() && tag == kGbd_Tag && pos == tagstart + 8 && pos + tagsize - 8 <= size && pos > 16 && tagsize > 8) { size_t width = 4, order = 0, stride = width; size_t num = tagsize - 8; uint8_t flags = (order << 2) | (width - 1) | (stride == width ? 0 : 16); commands_add.push_back(kCommandPredict); commands_add.push_back(flags); if (flags & 16) EncodeVarInt(stride, &commands_add); EncodeVarInt(num, &commands_add); JXL_RETURN_IF_ERROR(PredictAndShuffle(stride, width, order, num, icc, size, &pos, &data_add)); } if (commands_add.empty() && data_add.empty() && pos + 20 <= size) { Tag subTag = DecodeKeyword(icc, size, pos); if (subTag == kXyz_Tag && DecodeUint32(icc, size, pos + 4) == 0) { commands_add.push_back(kCommandXYZ); pos += 8; for (size_t j = 0; j < 12; j++) data_add.push_back(icc[pos++]); } } if (commands_add.empty() && data_add.empty() && pos + 8 <= size) { if (DecodeUint32(icc, size, pos + 4) == 0) { Tag subTag = DecodeKeyword(icc, size, pos); for (size_t i = 0; i < kNumTypeStrings; i++) { if (subTag == *kTypeStrings[i]) { commands_add.push_back(kCommandTypeStartFirst + i); pos += 8; break; } } } } if (!(commands_add.empty() && data_add.empty()) || pos == size) { if (last0 < last1) { commands.push_back(kCommandInsert); EncodeVarInt(last1 - last0, &commands); while (last0 < last1) { data.push_back(icc[last0++]); } } for (size_t i = 0; i < commands_add.size(); i++) { commands.push_back(commands_add[i]); } for (size_t i = 0; i < data_add.size(); i++) { data.push_back(data_add[i]); } last0 = pos; } if (commands_add.empty() && data_add.empty()) { pos++; } } EncodeVarInt(commands.size(), result); for (size_t i = 0; i < commands.size(); i++) { result->push_back(commands[i]); } for (size_t i = 0; i < data.size(); i++) { result->push_back(data[i]); } return true; } Status WriteICC(const PaddedBytes& icc, BitWriter* JXL_RESTRICT writer, size_t layer, AuxOut* JXL_RESTRICT aux_out) { if (icc.empty()) return JXL_FAILURE("ICC must be non-empty"); PaddedBytes enc; JXL_RETURN_IF_ERROR(PredictICC(icc.data(), icc.size(), &enc)); std::vector> tokens(1); BitWriter::Allotment allotment(writer, 128); JXL_RETURN_IF_ERROR(U64Coder::Write(enc.size(), writer)); ReclaimAndCharge(writer, &allotment, layer, aux_out); for (size_t i = 0; i < enc.size(); i++) { tokens[0].emplace_back( ICCANSContext(i, i > 0 ? enc[i - 1] : 0, i > 1 ? enc[i - 2] : 0), enc[i]); } HistogramParams params; params.lz77_method = enc.size() < 4096 ? HistogramParams::LZ77Method::kOptimal : HistogramParams::LZ77Method::kLZ77; EntropyEncodingData code; std::vector context_map; params.force_huffman = true; BuildAndEncodeHistograms(params, kNumICCContexts, tokens, &code, &context_map, writer, layer, aux_out); WriteTokens(tokens[0], code, context_map, writer, layer, aux_out); return true; } } // namespace jxl