// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Edge-preserving smoothing: weighted average based on L1 patch similarity. #include "lib/jxl/epf.h" #include #include #include #include #include #include #include #include // std::accumulate #include #include "lib/jxl/ac_strategy.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/data_parallel.h" #include "lib/jxl/base/status.h" #include "lib/jxl/common.h" #include "lib/jxl/convolve.h" #include "lib/jxl/dec_cache.h" #include "lib/jxl/image.h" #include "lib/jxl/image_bundle.h" #include "lib/jxl/image_ops.h" #include "lib/jxl/loop_filter.h" #include "lib/jxl/quant_weights.h" #include "lib/jxl/quantizer.h" namespace jxl { // Mirror n floats starting at *p and store them before p. JXL_INLINE void LeftMirror(float* p, size_t n) { for (size_t i = 0; i < n; i++) { *(p - 1 - i) = p[i]; } } // Mirror n floats starting at *(p - n) and store them at *p. JXL_INLINE void RightMirror(float* p, size_t n) { for (size_t i = 0; i < n; i++) { p[i] = *(p - 1 - i); } } void ComputeSigma(const Rect& block_rect, PassesDecoderState* state) { const LoopFilter& lf = state->shared->frame_header.loop_filter; JXL_CHECK(lf.epf_iters > 0); const AcStrategyImage& ac_strategy = state->shared->ac_strategy; const float quant_scale = state->shared->quantizer.Scale(); const size_t sigma_stride = state->sigma.PixelsPerRow(); const size_t sharpness_stride = state->shared->epf_sharpness.PixelsPerRow(); for (size_t by = 0; by < block_rect.ysize(); ++by) { float* JXL_RESTRICT sigma_row = block_rect.Row(&state->sigma, by); const uint8_t* JXL_RESTRICT sharpness_row = block_rect.ConstRow(state->shared->epf_sharpness, by); AcStrategyRow acs_row = ac_strategy.ConstRow(block_rect, by); const int* const JXL_RESTRICT row_quant = block_rect.ConstRow(state->shared->raw_quant_field, by); for (size_t bx = 0; bx < block_rect.xsize(); bx++) { AcStrategy acs = acs_row[bx]; size_t llf_x = acs.covered_blocks_x(); if (!acs.IsFirstBlock()) continue; // quant_scale is smaller for low quality. // quant_scale is roughly 0.08 / butteraugli score. // // row_quant is smaller for low quality. // row_quant is a quantization multiplier of form 1.0 / // row_quant[bx] // // lf.epf_quant_mul is a parameter in the format // kInvSigmaNum is a constant float sigma_quant = lf.epf_quant_mul / (quant_scale * row_quant[bx] * kInvSigmaNum); for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) { for (size_t ix = 0; ix < acs.covered_blocks_x(); ix++) { float sigma = sigma_quant * lf.epf_sharp_lut[sharpness_row[bx + ix + iy * sharpness_stride]]; // Avoid infinities. sigma = std::min(-1e-4f, sigma); // TODO(veluca): remove this. sigma_row[bx + ix + kSigmaPadding + (iy + kSigmaPadding) * sigma_stride] = 1.0f / sigma; } } // TODO(veluca): remove this padding. // Left padding with mirroring. if (bx + block_rect.x0() == 0) { for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) { LeftMirror( sigma_row + kSigmaPadding + (iy + kSigmaPadding) * sigma_stride, kSigmaBorder); } } // Right padding with mirroring. if (bx + block_rect.x0() + llf_x == state->shared->frame_dim.xsize_blocks) { for (size_t iy = 0; iy < acs.covered_blocks_y(); iy++) { RightMirror(sigma_row + kSigmaPadding + bx + llf_x + (iy + kSigmaPadding) * sigma_stride, kSigmaBorder); } } // Offsets for row copying, in blocks. size_t offset_before = bx + block_rect.x0() == 0 ? 1 : bx + kSigmaPadding; size_t offset_after = bx + block_rect.x0() + llf_x == state->shared->frame_dim.xsize_blocks ? kSigmaPadding + llf_x + bx + kSigmaBorder : kSigmaPadding + llf_x + bx; size_t num = offset_after - offset_before; // Above if (by + block_rect.y0() == 0) { for (size_t iy = 0; iy < kSigmaBorder; iy++) { memcpy( sigma_row + offset_before + (kSigmaPadding - 1 - iy) * sigma_stride, sigma_row + offset_before + (kSigmaPadding + iy) * sigma_stride, num * sizeof(*sigma_row)); } } // Below if (by + block_rect.y0() + acs.covered_blocks_y() == state->shared->frame_dim.ysize_blocks) { for (size_t iy = 0; iy < kSigmaBorder; iy++) { memcpy( sigma_row + offset_before + sigma_stride * (acs.covered_blocks_y() + kSigmaPadding + iy), sigma_row + offset_before + sigma_stride * (acs.covered_blocks_y() + kSigmaPadding - 1 - iy), num * sizeof(*sigma_row)); } } } } } } // namespace jxl