// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/gauss_blur.h" #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/gauss_blur.cc" #include #include #include #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/profiler.h" #include "lib/jxl/common.h" #include "lib/jxl/image_ops.h" #include "lib/jxl/linalg.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Broadcast; #if HWY_TARGET != HWY_SCALAR using hwy::HWY_NAMESPACE::ShiftLeftLanes; #endif using hwy::HWY_NAMESPACE::Vec; void FastGaussian1D(const hwy::AlignedUniquePtr& rg, const float* JXL_RESTRICT in, intptr_t width, float* JXL_RESTRICT out) { // Although the current output depends on the previous output, we can unroll // up to 4x by precomputing up to fourth powers of the constants. Beyond that, // numerical precision might become a problem. Macro because this is tested // in #if alongside HWY_TARGET. #define JXL_GAUSS_MAX_LANES 4 using D = HWY_CAPPED(float, JXL_GAUSS_MAX_LANES); using V = Vec; const D d; const V mul_in_1 = Load(d, rg->mul_in + 0 * 4); const V mul_in_3 = Load(d, rg->mul_in + 1 * 4); const V mul_in_5 = Load(d, rg->mul_in + 2 * 4); const V mul_prev_1 = Load(d, rg->mul_prev + 0 * 4); const V mul_prev_3 = Load(d, rg->mul_prev + 1 * 4); const V mul_prev_5 = Load(d, rg->mul_prev + 2 * 4); const V mul_prev2_1 = Load(d, rg->mul_prev2 + 0 * 4); const V mul_prev2_3 = Load(d, rg->mul_prev2 + 1 * 4); const V mul_prev2_5 = Load(d, rg->mul_prev2 + 2 * 4); V prev_1 = Zero(d); V prev_3 = Zero(d); V prev_5 = Zero(d); V prev2_1 = Zero(d); V prev2_3 = Zero(d); V prev2_5 = Zero(d); const intptr_t N = rg->radius; intptr_t n = -N + 1; // Left side with bounds checks and only write output after n >= 0. const intptr_t first_aligned = RoundUpTo(N + 1, Lanes(d)); for (; n < std::min(first_aligned, width); ++n) { const intptr_t left = n - N - 1; const intptr_t right = n + N - 1; const float left_val = left >= 0 ? in[left] : 0.0f; const float right_val = right < width ? in[right] : 0.0f; const V sum = Set(d, left_val + right_val); // (Only processing a single lane here, no need to broadcast) V out_1 = sum * mul_in_1; V out_3 = sum * mul_in_3; V out_5 = sum * mul_in_5; out_1 = MulAdd(mul_prev2_1, prev2_1, out_1); out_3 = MulAdd(mul_prev2_3, prev2_3, out_3); out_5 = MulAdd(mul_prev2_5, prev2_5, out_5); prev2_1 = prev_1; prev2_3 = prev_3; prev2_5 = prev_5; out_1 = MulAdd(mul_prev_1, prev_1, out_1); out_3 = MulAdd(mul_prev_3, prev_3, out_3); out_5 = MulAdd(mul_prev_5, prev_5, out_5); prev_1 = out_1; prev_3 = out_3; prev_5 = out_5; if (n >= 0) { out[n] = GetLane(out_1 + out_3 + out_5); } } // The above loop is effectively scalar but it is convenient to use the same // prev/prev2 variables, so broadcast to each lane before the unrolled loop. #if HWY_TARGET != HWY_SCALAR && JXL_GAUSS_MAX_LANES > 1 prev2_1 = Broadcast<0>(prev2_1); prev2_3 = Broadcast<0>(prev2_3); prev2_5 = Broadcast<0>(prev2_5); prev_1 = Broadcast<0>(prev_1); prev_3 = Broadcast<0>(prev_3); prev_5 = Broadcast<0>(prev_5); #endif // Unrolled, no bounds checking needed. for (; n < width - N + 1 - (JXL_GAUSS_MAX_LANES - 1); n += Lanes(d)) { const V sum = LoadU(d, in + n - N - 1) + LoadU(d, in + n + N - 1); // To get a vector of output(s), we multiply broadcasted vectors (of each // input plus the two previous outputs) and add them all together. // Incremental broadcasting and shifting is expected to be cheaper than // horizontal adds or transposing 4x4 values because they run on a different // port, concurrently with the FMA. const V in0 = Broadcast<0>(sum); V out_1 = in0 * mul_in_1; V out_3 = in0 * mul_in_3; V out_5 = in0 * mul_in_5; #if HWY_TARGET != HWY_SCALAR && JXL_GAUSS_MAX_LANES >= 2 const V in1 = Broadcast<1>(sum); out_1 = MulAdd(ShiftLeftLanes<1>(mul_in_1), in1, out_1); out_3 = MulAdd(ShiftLeftLanes<1>(mul_in_3), in1, out_3); out_5 = MulAdd(ShiftLeftLanes<1>(mul_in_5), in1, out_5); #if JXL_GAUSS_MAX_LANES >= 4 const V in2 = Broadcast<2>(sum); out_1 = MulAdd(ShiftLeftLanes<2>(mul_in_1), in2, out_1); out_3 = MulAdd(ShiftLeftLanes<2>(mul_in_3), in2, out_3); out_5 = MulAdd(ShiftLeftLanes<2>(mul_in_5), in2, out_5); const V in3 = Broadcast<3>(sum); out_1 = MulAdd(ShiftLeftLanes<3>(mul_in_1), in3, out_1); out_3 = MulAdd(ShiftLeftLanes<3>(mul_in_3), in3, out_3); out_5 = MulAdd(ShiftLeftLanes<3>(mul_in_5), in3, out_5); #endif #endif out_1 = MulAdd(mul_prev2_1, prev2_1, out_1); out_3 = MulAdd(mul_prev2_3, prev2_3, out_3); out_5 = MulAdd(mul_prev2_5, prev2_5, out_5); out_1 = MulAdd(mul_prev_1, prev_1, out_1); out_3 = MulAdd(mul_prev_3, prev_3, out_3); out_5 = MulAdd(mul_prev_5, prev_5, out_5); #if HWY_TARGET == HWY_SCALAR || JXL_GAUSS_MAX_LANES == 1 prev2_1 = prev_1; prev2_3 = prev_3; prev2_5 = prev_5; prev_1 = out_1; prev_3 = out_3; prev_5 = out_5; #else prev2_1 = Broadcast(out_1); prev2_3 = Broadcast(out_3); prev2_5 = Broadcast(out_5); prev_1 = Broadcast(out_1); prev_3 = Broadcast(out_3); prev_5 = Broadcast(out_5); #endif Store(out_1 + out_3 + out_5, d, out + n); } // Remainder handling with bounds checks for (; n < width; ++n) { const intptr_t left = n - N - 1; const intptr_t right = n + N - 1; const float left_val = left >= 0 ? in[left] : 0.0f; const float right_val = right < width ? in[right] : 0.0f; const V sum = Set(d, left_val + right_val); // (Only processing a single lane here, no need to broadcast) V out_1 = sum * mul_in_1; V out_3 = sum * mul_in_3; V out_5 = sum * mul_in_5; out_1 = MulAdd(mul_prev2_1, prev2_1, out_1); out_3 = MulAdd(mul_prev2_3, prev2_3, out_3); out_5 = MulAdd(mul_prev2_5, prev2_5, out_5); prev2_1 = prev_1; prev2_3 = prev_3; prev2_5 = prev_5; out_1 = MulAdd(mul_prev_1, prev_1, out_1); out_3 = MulAdd(mul_prev_3, prev_3, out_3); out_5 = MulAdd(mul_prev_5, prev_5, out_5); prev_1 = out_1; prev_3 = out_3; prev_5 = out_5; out[n] = GetLane(out_1 + out_3 + out_5); } } // Ring buffer is for n, n-1, n-2; round up to 4 for faster modulo. constexpr size_t kMod = 4; // Avoids an unnecessary store during warmup. struct OutputNone { template void operator()(const V& /*unused*/, float* JXL_RESTRICT /*pos*/, ptrdiff_t /*offset*/) const {} }; // Common case: write output vectors in all VerticalBlock except warmup. struct OutputStore { template void operator()(const V& out, float* JXL_RESTRICT pos, ptrdiff_t offset) const { // Stream helps for large images but is slower for images that fit in cache. Store(out, HWY_FULL(float)(), pos + offset); } }; // At top/bottom borders, we don't have two inputs to load, so avoid addition. // pos may even point to all zeros if the row is outside the input image. class SingleInput { public: explicit SingleInput(const float* pos) : pos_(pos) {} Vec operator()(const size_t offset) const { return Load(HWY_FULL(float)(), pos_ + offset); } const float* pos_; }; // In the middle of the image, we need to load from a row above and below, and // return the sum. class TwoInputs { public: TwoInputs(const float* pos1, const float* pos2) : pos1_(pos1), pos2_(pos2) {} Vec operator()(const size_t offset) const { const auto in1 = Load(HWY_FULL(float)(), pos1_ + offset); const auto in2 = Load(HWY_FULL(float)(), pos2_ + offset); return in1 + in2; } private: const float* pos1_; const float* pos2_; }; // Block := kVectors consecutive full vectors (one cache line except on the // right boundary, where we can only rely on having one vector). Unrolling to // the cache line size improves cache utilization. template void VerticalBlock(const V& d1_1, const V& d1_3, const V& d1_5, const V& n2_1, const V& n2_3, const V& n2_5, const Input& input, size_t& ctr, float* ring_buffer, const Output output, float* JXL_RESTRICT out_pos) { const HWY_FULL(float) d; constexpr size_t kVN = MaxLanes(d); // More cache-friendly to process an entirely cache line at a time constexpr size_t kLanes = kVectors * kVN; float* JXL_RESTRICT y_1 = ring_buffer + 0 * kLanes * kMod; float* JXL_RESTRICT y_3 = ring_buffer + 1 * kLanes * kMod; float* JXL_RESTRICT y_5 = ring_buffer + 2 * kLanes * kMod; const size_t n_0 = (++ctr) % kMod; const size_t n_1 = (ctr - 1) % kMod; const size_t n_2 = (ctr - 2) % kMod; for (size_t idx_vec = 0; idx_vec < kVectors; ++idx_vec) { const V sum = input(idx_vec * kVN); const V y_n1_1 = Load(d, y_1 + kLanes * n_1 + idx_vec * kVN); const V y_n1_3 = Load(d, y_3 + kLanes * n_1 + idx_vec * kVN); const V y_n1_5 = Load(d, y_5 + kLanes * n_1 + idx_vec * kVN); const V y_n2_1 = Load(d, y_1 + kLanes * n_2 + idx_vec * kVN); const V y_n2_3 = Load(d, y_3 + kLanes * n_2 + idx_vec * kVN); const V y_n2_5 = Load(d, y_5 + kLanes * n_2 + idx_vec * kVN); // (35) const V y1 = MulAdd(n2_1, sum, NegMulSub(d1_1, y_n1_1, y_n2_1)); const V y3 = MulAdd(n2_3, sum, NegMulSub(d1_3, y_n1_3, y_n2_3)); const V y5 = MulAdd(n2_5, sum, NegMulSub(d1_5, y_n1_5, y_n2_5)); Store(y1, d, y_1 + kLanes * n_0 + idx_vec * kVN); Store(y3, d, y_3 + kLanes * n_0 + idx_vec * kVN); Store(y5, d, y_5 + kLanes * n_0 + idx_vec * kVN); output(y1 + y3 + y5, out_pos, idx_vec * kVN); } // NOTE: flushing cache line out_pos hurts performance - less so with // clflushopt than clflush but still a significant slowdown. } // Reads/writes one block (kVectors full vectors) in each row. template void VerticalStrip(const hwy::AlignedUniquePtr& rg, const ImageF& in, const size_t x, ImageF* JXL_RESTRICT out) { // We're iterating vertically, so use multiple full-length vectors (each lane // is one column of row n). using D = HWY_FULL(float); using V = Vec; const D d; constexpr size_t kVN = MaxLanes(d); // More cache-friendly to process an entirely cache line at a time constexpr size_t kLanes = kVectors * kVN; #if HWY_TARGET == HWY_SCALAR const V d1_1 = Set(d, rg->d1[0 * 4]); const V d1_3 = Set(d, rg->d1[1 * 4]); const V d1_5 = Set(d, rg->d1[2 * 4]); const V n2_1 = Set(d, rg->n2[0 * 4]); const V n2_3 = Set(d, rg->n2[1 * 4]); const V n2_5 = Set(d, rg->n2[2 * 4]); #else const V d1_1 = LoadDup128(d, rg->d1 + 0 * 4); const V d1_3 = LoadDup128(d, rg->d1 + 1 * 4); const V d1_5 = LoadDup128(d, rg->d1 + 2 * 4); const V n2_1 = LoadDup128(d, rg->n2 + 0 * 4); const V n2_3 = LoadDup128(d, rg->n2 + 1 * 4); const V n2_5 = LoadDup128(d, rg->n2 + 2 * 4); #endif const size_t N = rg->radius; const size_t ysize = in.ysize(); size_t ctr = 0; HWY_ALIGN float ring_buffer[3 * kLanes * kMod] = {0}; HWY_ALIGN static constexpr float zero[kLanes] = {0}; // Warmup: top is out of bounds (zero padded), bottom is usually in-bounds. ssize_t n = -static_cast(N) + 1; for (; n < 0; ++n) { // bottom is always non-negative since n is initialized in -N + 1. const size_t bottom = n + N - 1; VerticalBlock( d1_1, d1_3, d1_5, n2_1, n2_3, n2_5, SingleInput(bottom < ysize ? in.ConstRow(bottom) + x : zero), ctr, ring_buffer, OutputNone(), nullptr); } JXL_DASSERT(n >= 0); // Start producing output; top is still out of bounds. for (; static_cast(n) < std::min(N + 1, ysize); ++n) { const size_t bottom = n + N - 1; VerticalBlock( d1_1, d1_3, d1_5, n2_1, n2_3, n2_5, SingleInput(bottom < ysize ? in.ConstRow(bottom) + x : zero), ctr, ring_buffer, OutputStore(), out->Row(n) + x); } // Interior outputs with prefetching and without bounds checks. constexpr size_t kPrefetchRows = 8; for (; n < static_cast(ysize - N + 1 - kPrefetchRows); ++n) { const size_t top = n - N - 1; const size_t bottom = n + N - 1; VerticalBlock( d1_1, d1_3, d1_5, n2_1, n2_3, n2_5, TwoInputs(in.ConstRow(top) + x, in.ConstRow(bottom) + x), ctr, ring_buffer, OutputStore(), out->Row(n) + x); hwy::Prefetch(in.ConstRow(top + kPrefetchRows) + x); hwy::Prefetch(in.ConstRow(bottom + kPrefetchRows) + x); } // Bottom border without prefetching and with bounds checks. for (; static_cast(n) < ysize; ++n) { const size_t top = n - N - 1; const size_t bottom = n + N - 1; VerticalBlock( d1_1, d1_3, d1_5, n2_1, n2_3, n2_5, TwoInputs(in.ConstRow(top) + x, bottom < ysize ? in.ConstRow(bottom) + x : zero), ctr, ring_buffer, OutputStore(), out->Row(n) + x); } } // Apply 1D vertical scan to multiple columns (one per vector lane). // Not yet parallelized. void FastGaussianVertical(const hwy::AlignedUniquePtr& rg, const ImageF& in, ThreadPool* /*pool*/, ImageF* JXL_RESTRICT out) { PROFILER_FUNC; JXL_CHECK(SameSize(in, *out)); constexpr size_t kCacheLineLanes = 64 / sizeof(float); constexpr size_t kVN = MaxLanes(HWY_FULL(float)()); constexpr size_t kCacheLineVectors = kCacheLineLanes / kVN; size_t x = 0; for (; x + kCacheLineLanes <= in.xsize(); x += kCacheLineLanes) { VerticalStrip(rg, in, x, out); } for (; x < in.xsize(); x += kVN) { VerticalStrip<1>(rg, in, x, out); } } // TODO(veluca): consider replacing with FastGaussian. ImageF ConvolveXSampleAndTranspose(const ImageF& in, const std::vector& kernel, const size_t res) { JXL_ASSERT(kernel.size() % 2 == 1); JXL_ASSERT(in.xsize() % res == 0); const size_t offset = res / 2; const size_t out_xsize = in.xsize() / res; ImageF out(in.ysize(), out_xsize); const int r = kernel.size() / 2; HWY_FULL(float) df; std::vector row_tmp(in.xsize() + 2 * r + Lanes(df)); float* const JXL_RESTRICT rowp = &row_tmp[r]; std::vector padded_k = kernel; padded_k.resize(padded_k.size() + Lanes(df)); const float* const kernelp = &padded_k[r]; for (size_t y = 0; y < in.ysize(); ++y) { ExtrapolateBorders(in.Row(y), rowp, in.xsize(), r); size_t x = offset, ox = 0; for (; x < static_cast(r) && x < in.xsize(); x += res, ++ox) { float sum = 0.0f; for (int i = -r; i <= r; ++i) { sum += rowp[std::max( 0, std::min(static_cast(x) + i, in.xsize()))] * kernelp[i]; } out.Row(ox)[y] = sum; } for (; x + r < in.xsize(); x += res, ++ox) { auto sum = Zero(df); for (int i = -r; i <= r; i += Lanes(df)) { sum = MulAdd(LoadU(df, rowp + x + i), LoadU(df, kernelp + i), sum); } out.Row(ox)[y] = GetLane(SumOfLanes(df, sum)); } for (; x < in.xsize(); x += res, ++ox) { float sum = 0.0f; for (int i = -r; i <= r; ++i) { sum += rowp[std::max( 0, std::min(static_cast(x) + i, in.xsize()))] * kernelp[i]; } out.Row(ox)[y] = sum; } } return out; } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(FastGaussian1D); HWY_EXPORT(ConvolveXSampleAndTranspose); void FastGaussian1D(const hwy::AlignedUniquePtr& rg, const float* JXL_RESTRICT in, intptr_t width, float* JXL_RESTRICT out) { return HWY_DYNAMIC_DISPATCH(FastGaussian1D)(rg, in, width, out); } HWY_EXPORT(FastGaussianVertical); // Local function. void ExtrapolateBorders(const float* const JXL_RESTRICT row_in, float* const JXL_RESTRICT row_out, const int xsize, const int radius) { const int lastcol = xsize - 1; for (int x = 1; x <= radius; ++x) { row_out[-x] = row_in[std::min(x, xsize - 1)]; } memcpy(row_out, row_in, xsize * sizeof(row_out[0])); for (int x = 1; x <= radius; ++x) { row_out[lastcol + x] = row_in[std::max(0, lastcol - x)]; } } ImageF ConvolveXSampleAndTranspose(const ImageF& in, const std::vector& kernel, const size_t res) { return HWY_DYNAMIC_DISPATCH(ConvolveXSampleAndTranspose)(in, kernel, res); } Image3F ConvolveXSampleAndTranspose(const Image3F& in, const std::vector& kernel, const size_t res) { return Image3F(ConvolveXSampleAndTranspose(in.Plane(0), kernel, res), ConvolveXSampleAndTranspose(in.Plane(1), kernel, res), ConvolveXSampleAndTranspose(in.Plane(2), kernel, res)); } ImageF ConvolveAndSample(const ImageF& in, const std::vector& kernel, const size_t res) { ImageF tmp = ConvolveXSampleAndTranspose(in, kernel, res); return ConvolveXSampleAndTranspose(tmp, kernel, res); } // Implements "Recursive Implementation of the Gaussian Filter Using Truncated // Cosine Functions" by Charalampidis [2016]. hwy::AlignedUniquePtr CreateRecursiveGaussian(double sigma) { PROFILER_FUNC; auto rg = hwy::MakeUniqueAligned(); constexpr double kPi = 3.141592653589793238; const double radius = roundf(3.2795 * sigma + 0.2546); // (57), "N" // Table I, first row const double pi_div_2r = kPi / (2.0 * radius); const double omega[3] = {pi_div_2r, 3.0 * pi_div_2r, 5.0 * pi_div_2r}; // (37), k={1,3,5} const double p_1 = +1.0 / std::tan(0.5 * omega[0]); const double p_3 = -1.0 / std::tan(0.5 * omega[1]); const double p_5 = +1.0 / std::tan(0.5 * omega[2]); // (44), k={1,3,5} const double r_1 = +p_1 * p_1 / std::sin(omega[0]); const double r_3 = -p_3 * p_3 / std::sin(omega[1]); const double r_5 = +p_5 * p_5 / std::sin(omega[2]); // (50), k={1,3,5} const double neg_half_sigma2 = -0.5 * sigma * sigma; const double recip_radius = 1.0 / radius; double rho[3]; for (size_t i = 0; i < 3; ++i) { rho[i] = std::exp(neg_half_sigma2 * omega[i] * omega[i]) * recip_radius; } // second part of (52), k1,k2 = 1,3; 3,5; 5,1 const double D_13 = p_1 * r_3 - r_1 * p_3; const double D_35 = p_3 * r_5 - r_3 * p_5; const double D_51 = p_5 * r_1 - r_5 * p_1; // (52), k=5 const double recip_d13 = 1.0 / D_13; const double zeta_15 = D_35 * recip_d13; const double zeta_35 = D_51 * recip_d13; double A[9] = {p_1, p_3, p_5, // r_1, r_3, r_5, // (56) zeta_15, zeta_35, 1}; JXL_CHECK(Inv3x3Matrix(A)); const double gamma[3] = {1, radius * radius - sigma * sigma, // (55) zeta_15 * rho[0] + zeta_35 * rho[1] + rho[2]}; double beta[3]; MatMul(A, gamma, 3, 3, 1, beta); // (53) // Sanity check: correctly solved for beta (IIR filter weights are normalized) const double sum = beta[0] * p_1 + beta[1] * p_3 + beta[2] * p_5; // (39) JXL_ASSERT(std::abs(sum - 1) < 1E-12); (void)sum; rg->radius = static_cast(radius); double n2[3]; double d1[3]; for (size_t i = 0; i < 3; ++i) { n2[i] = -beta[i] * std::cos(omega[i] * (radius + 1.0)); // (33) d1[i] = -2.0 * std::cos(omega[i]); // (33) for (size_t lane = 0; lane < 4; ++lane) { rg->n2[4 * i + lane] = static_cast(n2[i]); rg->d1[4 * i + lane] = static_cast(d1[i]); } const double d_2 = d1[i] * d1[i]; // Obtained by expanding (35) for four consecutive outputs via sympy: // n, d, p, pp = symbols('n d p pp') // i0, i1, i2, i3 = symbols('i0 i1 i2 i3') // o0, o1, o2, o3 = symbols('o0 o1 o2 o3') // o0 = n*i0 - d*p - pp // o1 = n*i1 - d*o0 - p // o2 = n*i2 - d*o1 - o0 // o3 = n*i3 - d*o2 - o1 // Then expand(o3) and gather terms for p(prev), pp(prev2) etc. rg->mul_prev[4 * i + 0] = -d1[i]; rg->mul_prev[4 * i + 1] = d_2 - 1.0; rg->mul_prev[4 * i + 2] = -d_2 * d1[i] + 2.0 * d1[i]; rg->mul_prev[4 * i + 3] = d_2 * d_2 - 3.0 * d_2 + 1.0; rg->mul_prev2[4 * i + 0] = -1.0; rg->mul_prev2[4 * i + 1] = d1[i]; rg->mul_prev2[4 * i + 2] = -d_2 + 1.0; rg->mul_prev2[4 * i + 3] = d_2 * d1[i] - 2.0 * d1[i]; rg->mul_in[4 * i + 0] = n2[i]; rg->mul_in[4 * i + 1] = -d1[i] * n2[i]; rg->mul_in[4 * i + 2] = d_2 * n2[i] - n2[i]; rg->mul_in[4 * i + 3] = -d_2 * d1[i] * n2[i] + 2.0 * d1[i] * n2[i]; } return rg; } namespace { // Apply 1D horizontal scan to each row. void FastGaussianHorizontal(const hwy::AlignedUniquePtr& rg, const ImageF& in, ThreadPool* pool, ImageF* JXL_RESTRICT out) { PROFILER_FUNC; JXL_CHECK(SameSize(in, *out)); const intptr_t xsize = in.xsize(); JXL_CHECK(RunOnPool( pool, 0, in.ysize(), ThreadPool::NoInit, [&](const uint32_t task, size_t /*thread*/) { const size_t y = task; const float* row_in = in.ConstRow(y); float* JXL_RESTRICT row_out = out->Row(y); FastGaussian1D(rg, row_in, xsize, row_out); }, "FastGaussianHorizontal")); } } // namespace void FastGaussian(const hwy::AlignedUniquePtr& rg, const ImageF& in, ThreadPool* pool, ImageF* JXL_RESTRICT temp, ImageF* JXL_RESTRICT out) { FastGaussianHorizontal(rg, in, pool, temp); HWY_DYNAMIC_DISPATCH(FastGaussianVertical)(rg, *temp, pool, out); } } // namespace jxl #endif // HWY_ONCE