// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/gauss_blur.h" #include #include #include #include "gtest/gtest.h" #include "lib/extras/time.h" #include "lib/jxl/base/printf_macros.h" #include "lib/jxl/convolve.h" #include "lib/jxl/image_ops.h" #include "lib/jxl/image_test_utils.h" namespace jxl { bool NearEdge(const int64_t width, const int64_t peak) { // When around 3*sigma from the edge, there is negligible truncation. return peak < 10 || peak > width - 10; } // Follow the curve downwards by scanning right from `peak` and verifying // identical values at the same offset to the left. void VerifySymmetric(const int64_t width, const int64_t peak, const float* out) { const double tolerance = NearEdge(width, peak) ? 0.015 : 6E-7; for (int64_t i = 1;; ++i) { // Stop if we passed either end of the array if (peak - i < 0 || peak + i >= width) break; EXPECT_GT(out[peak + i - 1] + tolerance, out[peak + i]); // descending EXPECT_NEAR(out[peak - i], out[peak + i], tolerance); // symmetric } } void TestImpulseResponse(size_t width, size_t peak) { const auto rg3 = CreateRecursiveGaussian(3.0); const auto rg4 = CreateRecursiveGaussian(4.0); const auto rg5 = CreateRecursiveGaussian(5.0); // Extra padding for 4x unrolling auto in = hwy::AllocateAligned(width + 3); memset(in.get(), 0, sizeof(float) * (width + 3)); in[peak] = 1.0f; auto out3 = hwy::AllocateAligned(width + 3); auto out4 = hwy::AllocateAligned(width + 3); auto out5 = hwy::AllocateAligned(width + 3); FastGaussian1D(rg3, in.get(), width, out3.get()); FastGaussian1D(rg4, out3.get(), width, out4.get()); FastGaussian1D(rg5, in.get(), width, out5.get()); VerifySymmetric(width, peak, out3.get()); VerifySymmetric(width, peak, out4.get()); VerifySymmetric(width, peak, out5.get()); // Wider kernel has flatter peak EXPECT_LT(out5[peak] + 0.05, out3[peak]); // Gauss3 o Gauss4 ~= Gauss5 const double tolerance = NearEdge(width, peak) ? 0.04 : 0.01; for (size_t i = 0; i < width; ++i) { EXPECT_NEAR(out4[i], out5[i], tolerance); } } void TestImpulseResponseForWidth(size_t width) { for (size_t i = 0; i < width; ++i) { TestImpulseResponse(width, i); } } TEST(GaussBlurTest, ImpulseResponse) { TestImpulseResponseForWidth(10); // tiny even TestImpulseResponseForWidth(15); // small odd TestImpulseResponseForWidth(32); // power of two TestImpulseResponseForWidth(31); // power of two - 1 TestImpulseResponseForWidth(33); // power of two + 1 } ImageF Convolve(const ImageF& in, const std::vector& kernel) { return ConvolveAndSample(in, kernel, 1); } // Higher-precision version for accuracy test. ImageF ConvolveAndTransposeF64(const ImageF& in, const std::vector& kernel) { JXL_ASSERT(kernel.size() % 2 == 1); ImageF out(in.ysize(), in.xsize()); const int r = kernel.size() / 2; std::vector row_tmp(in.xsize() + 2 * r); float* const JXL_RESTRICT rowp = &row_tmp[r]; const double* const kernelp = &kernel[r]; for (size_t y = 0; y < in.ysize(); ++y) { ExtrapolateBorders(in.Row(y), rowp, in.xsize(), r); for (size_t x = 0, ox = 0; x < in.xsize(); ++x, ++ox) { double sum = 0.0; for (int i = -r; i <= r; ++i) { sum += rowp[std::max( 0, std::min(static_cast(x) + i, in.xsize()))] * kernelp[i]; } out.Row(ox)[y] = static_cast(sum); } } return out; } ImageF ConvolveF64(const ImageF& in, const std::vector& kernel) { ImageF tmp = ConvolveAndTransposeF64(in, kernel); return ConvolveAndTransposeF64(tmp, kernel); } void TestDirac2D(size_t xsize, size_t ysize, double sigma) { ImageF in(xsize, ysize); ZeroFillImage(&in); // We anyway ignore the border below, so might as well choose the middle. in.Row(ysize / 2)[xsize / 2] = 1.0f; ImageF temp(xsize, ysize); ImageF out(xsize, ysize); const auto rg = CreateRecursiveGaussian(sigma); ThreadPool* null_pool = nullptr; FastGaussian(rg, in, null_pool, &temp, &out); const std::vector kernel = GaussianKernel(static_cast(4 * sigma), static_cast(sigma)); const ImageF expected = Convolve(in, kernel); const double max_l1 = sigma < 1.5 ? 5E-3 : 6E-4; const size_t border = 2 * sigma; VerifyRelativeError(expected, out, max_l1, 1E-8, border); } TEST(GaussBlurTest, Test2D) { const std::vector dimensions{6, 15, 17, 64, 50, 49}; for (int xsize : dimensions) { for (int ysize : dimensions) { for (double sigma : {1.0, 2.5, 3.6, 7.0}) { TestDirac2D(static_cast(xsize), static_cast(ysize), sigma); } } } } // Slow (44 sec). To run, remove the disabled prefix. TEST(GaussBlurTest, DISABLED_SlowTestDirac1D) { const double sigma = 7.0; const auto rg = CreateRecursiveGaussian(sigma); // IPOL accuracy test uses 10^-15 tolerance, this is 2*10^-11. const size_t radius = static_cast(7 * sigma); const std::vector kernel = GaussianKernel(radius, sigma); const size_t length = 16384; ImageF inputs(length, 1); ZeroFillImage(&inputs); auto outputs = hwy::AllocateAligned(length); // One per center position auto sum_abs_err = hwy::AllocateAligned(length); std::fill(sum_abs_err.get(), sum_abs_err.get() + length, 0.0); for (size_t center = radius; center < length - radius; ++center) { inputs.Row(0)[center - 1] = 0.0f; // reset last peak, entire array now 0 inputs.Row(0)[center] = 1.0f; FastGaussian1D(rg, inputs.Row(0), length, outputs.get()); const ImageF outputs_fir = ConvolveF64(inputs, kernel); for (size_t i = 0; i < length; ++i) { const float abs_err = std::abs(outputs[i] - outputs_fir.Row(0)[i]); sum_abs_err[i] += static_cast(abs_err); } } const double max_abs_err = *std::max_element(sum_abs_err.get(), sum_abs_err.get() + length); printf("Max abs err: %.8e\n", max_abs_err); } void TestRandom(size_t xsize, size_t ysize, float min, float max, double sigma, double max_l1, double max_rel) { printf("%4" PRIuS " x %4" PRIuS " %4.1f %4.1f sigma %.1f\n", xsize, ysize, min, max, sigma); ImageF in(xsize, ysize); RandomFillImage(&in, min, max, 65537 + xsize * 129 + ysize); // FastGaussian/Convolve handle borders differently, so keep those pixels 0. const size_t border = 4 * sigma; SetBorder(border, 0.0f, &in); ImageF temp(xsize, ysize); ImageF out(xsize, ysize); const auto rg = CreateRecursiveGaussian(sigma); ThreadPool* null_pool = nullptr; FastGaussian(rg, in, null_pool, &temp, &out); const std::vector kernel = GaussianKernel(static_cast(4 * sigma), static_cast(sigma)); const ImageF expected = Convolve(in, kernel); VerifyRelativeError(expected, out, max_l1, max_rel, border); } void TestRandomForSizes(float min, float max, double sigma) { double max_l1 = 6E-3; double max_rel = 3E-3; TestRandom(128, 1, min, max, sigma, max_l1, max_rel); TestRandom(1, 128, min, max, sigma, max_l1, max_rel); TestRandom(30, 201, min, max, sigma, max_l1 * 1.6, max_rel * 1.2); TestRandom(201, 30, min, max, sigma, max_l1 * 1.6, max_rel * 1.2); TestRandom(201, 201, min, max, sigma, max_l1 * 2.0, max_rel * 1.2); } TEST(GaussBlurTest, TestRandom) { // small non-negative TestRandomForSizes(0.0f, 10.0f, 3.0f); TestRandomForSizes(0.0f, 10.0f, 7.0f); // small negative TestRandomForSizes(-4.0f, -1.0f, 3.0f); TestRandomForSizes(-4.0f, -1.0f, 7.0f); // mixed positive/negative TestRandomForSizes(-6.0f, 6.0f, 3.0f); TestRandomForSizes(-6.0f, 6.0f, 7.0f); } TEST(GaussBlurTest, TestSign) { const size_t xsize = 500; const size_t ysize = 606; ImageF in(xsize, ysize); ZeroFillImage(&in); const float center[33 * 33] = { -0.128445f, -0.098473f, -0.121883f, -0.093601f, 0.095665f, -0.271332f, -0.705475f, -1.324005f, -2.020741f, -1.329464f, 1.834064f, 4.787300f, 5.834560f, 5.272720f, 3.967960f, 3.547935f, 3.432732f, 3.383015f, 3.239326f, 3.290806f, 3.298954f, 3.397808f, 3.359730f, 3.533844f, 3.511856f, 3.436787f, 3.428310f, 3.460209f, 3.550011f, 3.590942f, 3.593109f, 3.560005f, 3.443165f, 0.089741f, 0.179230f, -0.032997f, -0.182610f, 0.005669f, -0.244759f, -0.395123f, -0.514961f, -1.003529f, -1.798656f, -2.377975f, 0.222191f, 3.957664f, 5.946804f, 5.543129f, 4.290096f, 3.621010f, 3.407257f, 3.392494f, 3.345367f, 3.391903f, 3.441605f, 3.429260f, 3.444969f, 3.507130f, 3.518612f, 3.443111f, 3.475948f, 3.536148f, 3.470333f, 3.628311f, 3.600243f, 3.292892f, -0.226730f, -0.573616f, -0.762165f, -0.398739f, -0.189842f, -0.275921f, -0.446739f, -0.550037f, -0.461033f, -0.724792f, -1.448349f, -1.814064f, -0.491032f, 2.817703f, 5.213242f, 5.675629f, 4.864548f, 3.876324f, 3.535587f, 3.530312f, 3.413765f, 3.386261f, 3.404854f, 3.383472f, 3.420830f, 3.326496f, 3.257877f, 3.362152f, 3.489609f, 3.619587f, 3.555805f, 3.423164f, 3.309708f, -0.483940f, -0.502926f, -0.592983f, -0.492527f, -0.413616f, -0.482555f, -0.475506f, -0.447990f, -0.338120f, -0.189072f, -0.376427f, -0.910828f, -1.878044f, -1.937927f, 1.423218f, 4.871609f, 5.767548f, 5.103741f, 3.983868f, 3.633003f, 3.458263f, 3.507309f, 3.247021f, 3.220612f, 3.326061f, 3.352814f, 3.291061f, 3.322739f, 3.444302f, 3.506207f, 3.556839f, 3.529575f, 3.457024f, -0.408161f, -0.431343f, -0.454369f, -0.356419f, -0.380924f, -0.399452f, -0.439476f, -0.412189f, -0.306816f, -0.008213f, -0.325813f, -0.537842f, -0.984100f, -1.805332f, -2.028198f, 0.773205f, 4.423046f, 5.604839f, 5.231617f, 4.080299f, 3.603008f, 3.498741f, 3.517010f, 3.333897f, 3.381336f, 3.342617f, 3.369686f, 3.434155f, 3.490452f, 3.607029f, 3.555298f, 3.702297f, 3.618679f, -0.503609f, -0.578564f, -0.419014f, -0.239883f, 0.269836f, 0.022984f, -0.455067f, -0.621777f, -0.304176f, -0.163792f, -0.490250f, -0.466637f, -0.391792f, -0.657940f, -1.498035f, -1.895836f, 0.036537f, 3.462456f, 5.586445f, 5.658791f, 4.434784f, 3.423435f, 3.318848f, 3.202328f, 3.532764f, 3.436687f, 3.354881f, 3.356941f, 3.382645f, 3.503902f, 3.512867f, 3.632366f, 3.537312f, -0.274734f, -0.658829f, -0.726532f, -0.281254f, 0.053196f, -0.064991f, -0.608517f, -0.720966f, -0.070602f, -0.111320f, -0.440956f, -0.492180f, -0.488762f, -0.569283f, -1.012741f, -1.582779f, -2.101479f, -1.392380f, 2.451153f, 5.555855f, 6.096313f, 5.230045f, 4.068172f, 3.404274f, 3.392586f, 3.326065f, 3.156670f, 3.284828f, 3.347012f, 3.319252f, 3.352310f, 3.610790f, 3.499847f, -0.150600f, -0.314445f, -0.093575f, -0.057384f, 0.053688f, -0.189255f, -0.263515f, -0.318653f, 0.053246f, 0.080627f, -0.119553f, -0.152454f, -0.305420f, -0.404869f, -0.385944f, -0.689949f, -1.204914f, -1.985748f, -1.711361f, 1.260658f, 4.626896f, 5.888351f, 5.450989f, 4.070587f, 3.539200f, 3.383492f, 3.296318f, 3.267334f, 3.436028f, 3.463005f, 3.502625f, 3.522282f, 3.403763f, -0.348049f, -0.302303f, -0.137016f, -0.041737f, -0.164001f, -0.358849f, -0.469627f, -0.428291f, -0.375797f, -0.246346f, -0.118950f, -0.084229f, -0.205681f, -0.241199f, -0.391796f, -0.323151f, -0.241211f, -0.834137f, -1.684219f, -1.972137f, 0.448399f, 4.019985f, 5.648144f, 5.647846f, 4.295094f, 3.641884f, 3.374790f, 3.197342f, 3.425545f, 3.507481f, 3.478065f, 3.430889f, 3.341900f, -1.016304f, -0.959221f, -0.909466f, -0.810715f, -0.590729f, -0.594467f, -0.646721f, -0.629364f, -0.528561f, -0.551819f, -0.301086f, -0.149101f, -0.060146f, -0.162220f, -0.326210f, -0.156548f, -0.036293f, -0.426098f, -1.145470f, -1.628998f, -2.003052f, -1.142891f, 2.885162f, 5.652863f, 5.718426f, 4.911140f, 3.234222f, 3.473373f, 3.577183f, 3.271603f, 3.410435f, 3.505489f, 3.434032f, -0.508911f, -0.438797f, -0.437450f, -0.627426f, -0.511745f, -0.304874f, -0.274246f, -0.261841f, -0.228466f, -0.342491f, -0.528206f, -0.490082f, -0.516350f, -0.361694f, -0.398514f, -0.276020f, -0.210369f, -0.355938f, -0.402622f, -0.538864f, -1.249573f, -2.100105f, -0.996178f, 1.886410f, 4.929745f, 5.630871f, 5.444199f, 4.042740f, 3.739189f, 3.691399f, 3.391956f, 3.469696f, 3.431232f, 0.204849f, 0.205433f, -0.131927f, -0.367908f, -0.374378f, -0.126820f, -0.186951f, -0.228565f, -0.081776f, -0.143143f, -0.379230f, -0.598701f, -0.458019f, -0.295586f, -0.407730f, -0.245853f, -0.043140f, 0.024242f, -0.038998f, -0.044151f, -0.425991f, -1.240753f, -1.943146f, -2.174755f, 0.523415f, 4.376751f, 5.956558f, 5.850082f, 4.403152f, 3.517399f, 3.560753f, 3.554836f, 3.471985f, -0.508503f, -0.109783f, 0.057747f, 0.190079f, -0.257153f, -0.591980f, -0.666771f, -0.525391f, -0.293060f, -0.489731f, -0.304855f, -0.259644f, -0.367825f, -0.346977f, -0.292889f, -0.215652f, -0.120705f, -0.176010f, -0.422905f, -0.114647f, -0.289749f, -0.374203f, -0.606754f, -1.127949f, -1.994583f, -0.588058f, 3.415840f, 5.603470f, 5.811581f, 4.959423f, 3.721760f, 3.710499f, 3.785461f, -0.554588f, -0.565517f, -0.434578f, -0.012482f, -0.284660f, -0.699795f, -0.957535f, -0.755135f, -0.382034f, -0.321552f, -0.287571f, -0.279537f, -0.314972f, -0.256287f, -0.372818f, -0.316017f, -0.287975f, -0.365639f, -0.512589f, -0.420692f, -0.436485f, -0.295353f, -0.451958f, -0.755459f, -1.272358f, -2.301353f, -1.776161f, 1.572483f, 4.826286f, 5.741898f, 5.162853f, 4.028049f, 3.686325f, -0.495590f, -0.664413f, -0.760044f, -0.152634f, -0.286480f, -0.340462f, 0.076477f, 0.187706f, -0.068787f, -0.293491f, -0.361145f, -0.292515f, -0.140671f, -0.190723f, -0.333302f, -0.368168f, -0.192581f, -0.154499f, -0.236544f, -0.124405f, -0.208321f, -0.465607f, -0.883080f, -1.104813f, -1.210567f, -1.415665f, -1.924683f, -1.634758f, 0.601017f, 4.276672f, 5.501350f, 5.331257f, 3.809288f, -0.727722f, -0.533619f, -0.511524f, -0.470688f, -0.610710f, -0.575130f, -0.311115f, -0.090420f, -0.297676f, -0.646118f, -0.742805f, -0.485050f, -0.330910f, -0.275417f, -0.357037f, -0.425598f, -0.481876f, -0.488941f, -0.393551f, -0.051105f, -0.090755f, -0.328674f, -0.536369f, -0.533684f, -0.336960f, -0.689194f, -1.187195f, -1.860954f, -2.290253f, -0.424774f, 3.050060f, 5.083332f, 5.291920f, -0.343605f, -0.190975f, -0.303692f, -0.456512f, -0.681820f, -0.690693f, -0.416729f, -0.286446f, -0.442055f, -0.709148f, -0.569160f, -0.382423f, -0.402321f, -0.383362f, -0.366413f, -0.290718f, -0.110069f, -0.220280f, -0.279018f, -0.255424f, -0.262081f, -0.487556f, -0.444492f, -0.250500f, -0.119583f, -0.291557f, -0.537781f, -1.104073f, -1.737091f, -1.697441f, -0.323456f, 2.042049f, 4.605103f, -0.310631f, -0.279568f, -0.012695f, -0.160130f, -0.358746f, -0.421101f, -0.559677f, -0.474136f, -0.416565f, -0.561817f, -0.534672f, -0.519157f, -0.767197f, -0.605831f, -0.186523f, 0.219872f, 0.264984f, -0.193432f, -0.363182f, -0.467472f, -0.462009f, -0.571053f, -0.522476f, -0.315903f, -0.237427f, -0.147320f, -0.100201f, -0.237568f, -0.763435f, -1.242043f, -2.135159f, -1.409485f, 1.236370f, -0.474247f, -0.517906f, -0.410217f, -0.542244f, -0.795986f, -0.590004f, -0.388863f, -0.462921f, -0.810627f, -0.778637f, -0.512486f, -0.718025f, -0.710854f, -0.482513f, -0.318233f, -0.194962f, -0.220116f, -0.421673f, -0.534233f, -0.403339f, -0.389332f, -0.407303f, -0.437355f, -0.469730f, -0.359600f, -0.352745f, -0.466755f, -0.414585f, -0.430756f, -0.656822f, -1.237038f, -2.046097f, -1.574898f, -0.593815f, -0.582165f, -0.336098f, -0.372612f, -0.554386f, -0.410603f, -0.428276f, -0.647644f, -0.640720f, -0.582207f, -0.414112f, -0.435547f, -0.435505f, -0.332561f, -0.248116f, -0.340221f, -0.277855f, -0.352699f, -0.377319f, -0.230850f, -0.313267f, -0.446270f, -0.346237f, -0.420422f, -0.530781f, -0.400341f, -0.463661f, -0.209091f, -0.056705f, -0.011772f, -0.169388f, -0.736275f, -1.463017f, -0.752701f, -0.668865f, -0.329765f, -0.299347f, -0.245667f, -0.286999f, -0.520420f, -0.675438f, -0.255753f, 0.141357f, -0.079639f, -0.419476f, -0.374069f, -0.046253f, 0.116116f, -0.145847f, -0.380371f, -0.563412f, -0.638634f, -0.310116f, -0.260914f, -0.508404f, -0.465508f, -0.527824f, -0.370979f, -0.305595f, -0.244694f, -0.254490f, 0.009968f, -0.050201f, -0.331219f, -0.614960f, -0.788208f, -0.483242f, -0.367516f, -0.186951f, -0.180031f, 0.129711f, -0.127811f, -0.384750f, -0.499542f, -0.418613f, -0.121635f, 0.203197f, -0.167290f, -0.397270f, -0.355461f, -0.218746f, -0.376785f, -0.521698f, -0.721581f, -0.845741f, -0.535439f, -0.220882f, -0.309067f, -0.555248f, -0.690342f, -0.664948f, -0.390102f, 0.020355f, -0.130447f, -0.173252f, -0.170059f, -0.633663f, -0.956001f, -0.621696f, -0.388302f, -0.342262f, -0.244370f, -0.386948f, -0.401421f, -0.172979f, -0.206163f, -0.450058f, -0.525789f, -0.549274f, -0.349251f, -0.474613f, -0.667976f, -0.435600f, -0.175369f, -0.196877f, -0.202976f, -0.242481f, -0.258369f, -0.189133f, -0.395397f, -0.765499f, -0.944016f, -0.850967f, -0.631561f, -0.152493f, -0.046432f, -0.262066f, -0.195919f, 0.048218f, 0.084972f, 0.039902f, 0.000618f, -0.404430f, -0.447456f, -0.418076f, -0.631935f, -0.717415f, -0.502888f, -0.530514f, -0.747826f, -0.704041f, -0.674969f, -0.516853f, -0.418446f, -0.327740f, -0.308815f, -0.481636f, -0.440083f, -0.481720f, -0.341053f, -0.283897f, -0.324368f, -0.352829f, -0.434349f, -0.545589f, -0.533104f, -0.472755f, -0.570496f, -0.557735f, -0.708176f, -0.493332f, -0.194416f, -0.186249f, -0.256710f, -0.271835f, -0.304752f, -0.431267f, -0.422398f, -0.646725f, -0.680801f, -0.249031f, -0.058567f, -0.213890f, -0.383949f, -0.540291f, -0.549877f, -0.225567f, -0.037174f, -0.499874f, -0.641010f, -0.628044f, -0.390549f, -0.311497f, -0.542313f, -0.569565f, -0.473408f, -0.331245f, -0.357197f, -0.285599f, -0.200157f, -0.201866f, -0.124428f, -0.346016f, -0.392311f, -0.264496f, -0.285370f, -0.436974f, -0.523483f, -0.410461f, -0.267925f, -0.055016f, -0.382458f, -0.319771f, -0.049927f, 0.124329f, 0.266102f, -0.106606f, -0.773647f, -0.973053f, -0.708206f, -0.486137f, -0.319923f, -0.493900f, -0.490860f, -0.324986f, -0.147346f, -0.146088f, -0.161758f, -0.084396f, -0.379494f, 0.041626f, -0.113361f, -0.277767f, 0.083366f, 0.126476f, 0.139057f, 0.038040f, 0.038162f, -0.242126f, -0.411736f, -0.370049f, -0.455357f, -0.039257f, 0.264442f, -0.271492f, -0.425346f, -0.514847f, -0.448650f, -0.580399f, -0.652603f, -0.774803f, -0.692524f, -0.579578f, -0.465206f, -0.386265f, -0.458012f, -0.446594f, -0.284893f, -0.345448f, -0.350876f, -0.440350f, -0.360378f, -0.270428f, 0.237213f, -0.063602f, -0.364529f, -0.179867f, 0.078197f, 0.117947f, -0.093410f, -0.359119f, -0.480961f, -0.540638f, -0.436287f, -0.598576f, -0.253735f, -0.060093f, -0.549145f, -0.808327f, -0.698593f, -0.595764f, -0.582508f, -0.497353f, -0.480892f, -0.584240f, -0.665791f, -0.690903f, -0.743446f, -0.796677f, -0.782391f, -0.649010f, -0.628139f, -0.880848f, -0.829361f, -0.373272f, -0.223667f, 0.174572f, -0.348743f, -0.798901f, -0.692307f, -0.607609f, -0.401455f, -0.480919f, -0.450798f, -0.435413f, -0.322338f, -0.228382f, -0.450466f, -0.504440f, -0.477402f, -0.662224f, -0.583397f, -0.217445f, -0.157459f, -0.079584f, -0.226168f, -0.488720f, -0.669624f, -0.666878f, -0.565311f, -0.549625f, -0.364601f, -0.497627f, -0.736897f, -0.763023f, -0.741020f, -0.404503f, 0.184814f, -0.075315f, -0.281513f, -0.532906f, -0.405800f, -0.313438f, -0.536652f, -0.403381f, 0.011967f, 0.103310f, -0.269848f, -0.508656f, -0.445923f, -0.644859f, -0.617870f, -0.500927f, -0.371559f, -0.125580f, 0.028625f, -0.154713f, -0.442024f, -0.492764f, -0.199371f, 0.236305f, 0.225925f, 0.075577f, -0.285812f, -0.437145f, -0.374260f, -0.156693f, -0.129635f, -0.243206f, -0.123058f, 0.162148f, -0.313152f, -0.337982f, -0.358421f, 0.040070f, 0.038925f, -0.333313f, -0.351662f, 0.023014f, 0.091362f, -0.282890f, -0.373253f, -0.389050f, -0.532707f, -0.423347f, -0.349968f, -0.287045f, -0.202442f, -0.308430f, -0.222801f, -0.106323f, -0.056358f, 0.027222f, 0.390732f, 0.033558f, -0.160088f, -0.382217f, -0.535282f, -0.515900f, -0.022736f, 0.165665f, -0.111408f, -0.233784f, -0.312357f, -0.541885f, -0.480022f, -0.482513f, -0.246254f, 0.132244f, 0.090134f, 0.234634f, -0.089249f, -0.460854f, -0.515457f, -0.450874f, -0.311031f, -0.387680f, -0.360554f, -0.179241f, -0.283817f, -0.475815f, -0.246399f, -0.388958f, -0.551140f, -0.496239f, -0.559879f, -0.379761f, -0.254288f, -0.395111f, -0.613018f, -0.459427f, -0.263580f, -0.268929f, 0.080826f, 0.115616f, -0.097324f, -0.325310f, -0.480450f, -0.313286f, -0.310371f, -0.517361f, -0.288288f, -0.112679f, -0.173241f, -0.221664f, -0.039452f, -0.107578f, -0.089630f, -0.483768f, -0.571087f, -0.497108f, -0.321533f, -0.375492f, -0.540363f, -0.406815f, -0.388512f, -0.514561f, -0.540192f, -0.402412f, -0.232246f, -0.304749f, -0.383724f, -0.679596f, -0.685463f, -0.694538f, -0.642937f, -0.425789f, 0.103271f, -0.194862f, -0.487999f, -0.717281f, -0.681850f, -0.709286f, -0.615398f, -0.554245f, -0.254681f, -0.049950f, -0.002914f, -0.095383f, -0.370911f, -0.564224f, -0.242714f}; const size_t xtest = xsize / 2; const size_t ytest = ysize / 2; for (intptr_t dy = -16; dy <= 16; ++dy) { float* row = in.Row(ytest + dy); for (intptr_t dx = -16; dx <= 16; ++dx) row[xtest + dx] = center[(dy + 16) * 33 + (dx + 16)]; } const double sigma = 7.155933; ImageF temp(xsize, ysize); ImageF out_rg(xsize, ysize); const auto rg = CreateRecursiveGaussian(sigma); ThreadPool* null_pool = nullptr; FastGaussian(rg, in, null_pool, &temp, &out_rg); ImageF out_old; { const std::vector kernel = GaussianKernel(static_cast(4 * sigma), static_cast(sigma)); printf("old kernel size %" PRIuS "\n", kernel.size()); out_old = Convolve(in, kernel); } printf("rg %.4f old %.4f\n", out_rg.Row(ytest)[xtest], out_old.Row(ytest)[xtest]); } } // namespace jxl