// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Transfer functions for color encodings. #if defined(LIB_JXL_TRANSFER_FUNCTIONS_INL_H_) == defined(HWY_TARGET_TOGGLE) #ifdef LIB_JXL_TRANSFER_FUNCTIONS_INL_H_ #undef LIB_JXL_TRANSFER_FUNCTIONS_INL_H_ #else #define LIB_JXL_TRANSFER_FUNCTIONS_INL_H_ #endif #include #include #include #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/status.h" #include "lib/jxl/rational_polynomial-inl.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // Definitions for BT.2100-2 transfer functions (used inside/outside SIMD): // "display" is linear light (nits) normalized to [0, 1]. // "encoded" is a nonlinear encoding (e.g. PQ) in [0, 1]. // "scene" is a linear function of photon counts, normalized to [0, 1]. // Despite the stated ranges, we need unbounded transfer functions: see // http://www.littlecms.com/CIC18_UnboundedCMM.pdf. Inputs can be negative or // above 1 due to chromatic adaptation. To avoid severe round-trip errors caused // by clamping, we mirror negative inputs via copysign (f(-x) = -f(x), see // https://developer.apple.com/documentation/coregraphics/cgcolorspace/1644735-extendedsrgb) // and extend the function domains above 1. // Hybrid Log-Gamma. class TF_HLG { public: // EOTF. e = encoded. JXL_INLINE double DisplayFromEncoded(const double e) const { return OOTF(InvOETF(e)); } // Inverse EOTF. d = display. JXL_INLINE double EncodedFromDisplay(const double d) const { return OETF(InvOOTF(d)); } // Maximum error 5e-7. template JXL_INLINE V EncodedFromDisplay(D d, V x) const { const hwy::HWY_NAMESPACE::Rebind du; const V kSign = BitCast(d, Set(du, 0x80000000u)); const V original_sign = And(x, kSign); x = AndNot(kSign, x); // abs const V below_div12 = Sqrt(Set(d, 3.0f) * x); const V e = MulAdd(Set(d, kA * 0.693147181f), FastLog2f(d, MulAdd(Set(d, 12), x, Set(d, -kB))), Set(d, kC)); const V magnitude = IfThenElse(x <= Set(d, kDiv12), below_div12, e); return Or(AndNot(kSign, magnitude), original_sign); } private: // OETF (defines the HLG approach). s = scene, returns encoded. JXL_INLINE double OETF(double s) const { if (s == 0.0) return 0.0; const double original_sign = s; s = std::abs(s); if (s <= kDiv12) return copysignf(std::sqrt(3.0 * s), original_sign); const double e = kA * std::log(12 * s - kB) + kC; JXL_ASSERT(e > 0.0); return copysignf(e, original_sign); } // e = encoded, returns scene. JXL_INLINE double InvOETF(double e) const { if (e == 0.0) return 0.0; const double original_sign = e; e = std::abs(e); if (e <= 0.5) return copysignf(e * e * (1.0 / 3), original_sign); const double s = (std::exp((e - kC) * kRA) + kB) * kDiv12; JXL_ASSERT(s >= 0); return copysignf(s, original_sign); } // s = scene, returns display. JXL_INLINE double OOTF(const double s) const { // The actual (red channel) OOTF is RD = alpha * YS^(gamma-1) * RS, where // YS = 0.2627 * RS + 0.6780 * GS + 0.0593 * BS. Let alpha = 1 so we return // "display" (normalized [0, 1]) instead of nits. Our transfer function // interface does not allow a dependency on YS. Fortunately, the system // gamma at 334 nits is 1.0, so this reduces to RD = RS. return s; } // d = display, returns scene. JXL_INLINE double InvOOTF(const double d) const { return d; // see OOTF(). } static constexpr double kA = 0.17883277; static constexpr double kRA = 1.0 / kA; static constexpr double kB = 1 - 4 * kA; static constexpr double kC = 0.5599107295; static constexpr double kDiv12 = 1.0 / 12; }; class TF_709 { public: JXL_INLINE double EncodedFromDisplay(const double d) const { if (d < kThresh) return kMulLow * d; return kMulHi * std::pow(d, kPowHi) + kSub; } // Maximum error 1e-6. template JXL_INLINE V EncodedFromDisplay(D d, V x) const { auto low = Set(d, kMulLow) * x; auto hi = MulAdd(Set(d, kMulHi), FastPowf(d, x, Set(d, kPowHi)), Set(d, kSub)); return IfThenElse(x <= Set(d, kThresh), low, hi); } private: static constexpr double kThresh = 0.018; static constexpr double kMulLow = 4.5; static constexpr double kMulHi = 1.099; static constexpr double kPowHi = 0.45; static constexpr double kSub = -0.099; }; // Perceptual Quantization class TF_PQ { public: // EOTF (defines the PQ approach). e = encoded. JXL_INLINE double DisplayFromEncoded(double e) const { if (e == 0.0) return 0.0; const double original_sign = e; e = std::abs(e); const double xp = std::pow(e, 1.0 / kM2); const double num = std::max(xp - kC1, 0.0); const double den = kC2 - kC3 * xp; JXL_DASSERT(den != 0.0); const double d = std::pow(num / den, 1.0 / kM1); JXL_DASSERT(d >= 0.0); // Equal for e ~= 1E-9 return copysignf(d, original_sign); } // Maximum error 3e-6 template JXL_INLINE V DisplayFromEncoded(D d, V x) const { const hwy::HWY_NAMESPACE::Rebind du; const V kSign = BitCast(d, Set(du, 0x80000000u)); const V original_sign = And(x, kSign); x = AndNot(kSign, x); // abs // 4-over-4-degree rational polynomial approximation on x+x*x. This improves // the maximum error by about 5x over a rational polynomial for x. auto xpxx = MulAdd(x, x, x); HWY_ALIGN constexpr float p[(4 + 1) * 4] = { HWY_REP4(2.62975656e-04f), HWY_REP4(-6.23553089e-03f), HWY_REP4(7.38602301e-01f), HWY_REP4(2.64553172e+00f), HWY_REP4(5.50034862e-01f), }; HWY_ALIGN constexpr float q[(4 + 1) * 4] = { HWY_REP4(4.21350107e+02f), HWY_REP4(-4.28736818e+02f), HWY_REP4(1.74364667e+02f), HWY_REP4(-3.39078883e+01f), HWY_REP4(2.67718770e+00f), }; auto magnitude = EvalRationalPolynomial(d, xpxx, p, q); return Or(AndNot(kSign, magnitude), original_sign); } // Inverse EOTF. d = display. JXL_INLINE double EncodedFromDisplay(double d) const { if (d == 0.0) return 0.0; const double original_sign = d; d = std::abs(d); const double xp = std::pow(d, kM1); const double num = kC1 + xp * kC2; const double den = 1.0 + xp * kC3; const double e = std::pow(num / den, kM2); JXL_DASSERT(e > 0.0); return copysignf(e, original_sign); } // Maximum error 7e-7. template JXL_INLINE V EncodedFromDisplay(D d, V x) const { const hwy::HWY_NAMESPACE::Rebind du; const V kSign = BitCast(d, Set(du, 0x80000000u)); const V original_sign = And(x, kSign); x = AndNot(kSign, x); // abs // 4-over-4-degree rational polynomial approximation on x**0.25, with two // different polynomials above and below 1e-4. auto xto025 = Sqrt(Sqrt(x)); HWY_ALIGN constexpr float p[(4 + 1) * 4] = { HWY_REP4(1.351392e-02f), HWY_REP4(-1.095778e+00f), HWY_REP4(5.522776e+01f), HWY_REP4(1.492516e+02f), HWY_REP4(4.838434e+01f), }; HWY_ALIGN constexpr float q[(4 + 1) * 4] = { HWY_REP4(1.012416e+00f), HWY_REP4(2.016708e+01f), HWY_REP4(9.263710e+01f), HWY_REP4(1.120607e+02f), HWY_REP4(2.590418e+01f), }; HWY_ALIGN constexpr float plo[(4 + 1) * 4] = { HWY_REP4(9.863406e-06f), HWY_REP4(3.881234e-01f), HWY_REP4(1.352821e+02f), HWY_REP4(6.889862e+04f), HWY_REP4(-2.864824e+05f), }; HWY_ALIGN constexpr float qlo[(4 + 1) * 4] = { HWY_REP4(3.371868e+01f), HWY_REP4(1.477719e+03f), HWY_REP4(1.608477e+04f), HWY_REP4(-4.389884e+04f), HWY_REP4(-2.072546e+05f), }; auto magnitude = IfThenElse(x < Set(d, 1e-4f), EvalRationalPolynomial(d, xto025, plo, qlo), EvalRationalPolynomial(d, xto025, p, q)); return Or(AndNot(kSign, magnitude), original_sign); } private: static constexpr double kM1 = 2610.0 / 16384; static constexpr double kM2 = (2523.0 / 4096) * 128; static constexpr double kC1 = 3424.0 / 4096; static constexpr double kC2 = (2413.0 / 4096) * 32; static constexpr double kC3 = (2392.0 / 4096) * 32; }; // sRGB class TF_SRGB { public: template JXL_INLINE V DisplayFromEncoded(V x) const { const HWY_FULL(float) d; const HWY_FULL(uint32_t) du; const V kSign = BitCast(d, Set(du, 0x80000000u)); const V original_sign = And(x, kSign); x = AndNot(kSign, x); // abs // TODO(janwas): range reduction // Computed via af_cheb_rational (k=100); replicated 4x. HWY_ALIGN constexpr float p[(4 + 1) * 4] = { 2.200248328e-04f, 2.200248328e-04f, 2.200248328e-04f, 2.200248328e-04f, 1.043637593e-02f, 1.043637593e-02f, 1.043637593e-02f, 1.043637593e-02f, 1.624820318e-01f, 1.624820318e-01f, 1.624820318e-01f, 1.624820318e-01f, 7.961564959e-01f, 7.961564959e-01f, 7.961564959e-01f, 7.961564959e-01f, 8.210152774e-01f, 8.210152774e-01f, 8.210152774e-01f, 8.210152774e-01f, }; HWY_ALIGN constexpr float q[(4 + 1) * 4] = { 2.631846970e-01f, 2.631846970e-01f, 2.631846970e-01f, 2.631846970e-01f, 1.076976492e+00f, 1.076976492e+00f, 1.076976492e+00f, 1.076976492e+00f, 4.987528350e-01f, 4.987528350e-01f, 4.987528350e-01f, 4.987528350e-01f, -5.512498495e-02f, -5.512498495e-02f, -5.512498495e-02f, -5.512498495e-02f, 6.521209011e-03f, 6.521209011e-03f, 6.521209011e-03f, 6.521209011e-03f, }; const V linear = x * Set(d, kLowDivInv); const V poly = EvalRationalPolynomial(d, x, p, q); const V magnitude = IfThenElse(x > Set(d, kThreshSRGBToLinear), poly, linear); return Or(AndNot(kSign, magnitude), original_sign); } // Error ~5e-07 template JXL_INLINE V EncodedFromDisplay(D d, V x) const { const hwy::HWY_NAMESPACE::Rebind du; const V kSign = BitCast(d, Set(du, 0x80000000u)); const V original_sign = And(x, kSign); x = AndNot(kSign, x); // abs // Computed via af_cheb_rational (k=100); replicated 4x. HWY_ALIGN constexpr float p[(4 + 1) * 4] = { -5.135152395e-04f, -5.135152395e-04f, -5.135152395e-04f, -5.135152395e-04f, 5.287254571e-03f, 5.287254571e-03f, 5.287254571e-03f, 5.287254571e-03f, 3.903842876e-01f, 3.903842876e-01f, 3.903842876e-01f, 3.903842876e-01f, 1.474205315e+00f, 1.474205315e+00f, 1.474205315e+00f, 1.474205315e+00f, 7.352629620e-01f, 7.352629620e-01f, 7.352629620e-01f, 7.352629620e-01f, }; HWY_ALIGN constexpr float q[(4 + 1) * 4] = { 1.004519624e-02f, 1.004519624e-02f, 1.004519624e-02f, 1.004519624e-02f, 3.036675394e-01f, 3.036675394e-01f, 3.036675394e-01f, 3.036675394e-01f, 1.340816930e+00f, 1.340816930e+00f, 1.340816930e+00f, 1.340816930e+00f, 9.258482155e-01f, 9.258482155e-01f, 9.258482155e-01f, 9.258482155e-01f, 2.424867759e-02f, 2.424867759e-02f, 2.424867759e-02f, 2.424867759e-02f, }; const V linear = x * Set(d, kLowDiv); const V poly = EvalRationalPolynomial(d, Sqrt(x), p, q); const V magnitude = IfThenElse(x > Set(d, kThreshLinearToSRGB), poly, linear); return Or(AndNot(kSign, magnitude), original_sign); } private: static constexpr float kThreshSRGBToLinear = 0.04045f; static constexpr float kThreshLinearToSRGB = 0.0031308f; static constexpr float kLowDiv = 12.92f; static constexpr float kLowDivInv = 1.0f / kLowDiv; }; // Linear to sRGB conversion with error of at most 1.2e-4. template V FastLinearToSRGB(D d, V v) { const hwy::HWY_NAMESPACE::Rebind du; const hwy::HWY_NAMESPACE::Rebind di; // Convert to 0.25 - 0.5 range. auto v025_05 = BitCast(d, (BitCast(du, v) | Set(du, 0x3e800000)) & Set(du, 0x3effffff)); // third degree polynomial approximation between 0.25 and 0.5 // of 1.055/2^(7/2.4) * x^(1/2.4) * 0.5. A degree 4 polynomial only improves // accuracy by about 3x. auto d1 = MulAdd(v025_05, Set(d, 0.059914046f), Set(d, -0.108894556f)); auto d2 = MulAdd(d1, v025_05, Set(d, 0.107963754f)); auto pow = MulAdd(d2, v025_05, Set(d, 0.018092343f)); // Compute extra multiplier depending on exponent. Valid exponent range for // [0.0031308f, 1.0) is 0...8 after subtracting 118. // The next three constants contain a representation of the powers of // 2**(1/2.4) = 2**(5/12) times two; in particular, bits from 26 to 31 are // always the same and in k2to512powers_basebits, and the two arrays contain // the next groups of 8 bits. This ends up being a 22-bit representation (with // a mantissa of 13 bits). The choice of polynomial to approximate is such // that the multiplication factor has the highest 5 bits constant, and that // the factor for the lowest possible exponent is a power of two (thus making // the additional bits 0, which is used to correctly merge back together the // floats). constexpr uint32_t k2to512powers_basebits = 0x40000000; HWY_ALIGN constexpr uint8_t k2to512powers_25to18bits[16] = { 0x0, 0xa, 0x19, 0x26, 0x32, 0x41, 0x4d, 0x5c, 0x68, 0x75, 0x83, 0x8f, 0xa0, 0xaa, 0xb9, 0xc6, }; HWY_ALIGN constexpr uint8_t k2to512powers_17to10bits[16] = { 0x0, 0xb7, 0x4, 0xd, 0xcb, 0xe7, 0x41, 0x68, 0x51, 0xd1, 0xeb, 0xf2, 0x0, 0xb7, 0x4, 0xd, }; // Note that vld1q_s8_x2 on ARM seems to actually be slower. #if HWY_TARGET != HWY_SCALAR using hwy::HWY_NAMESPACE::ShiftLeft; using hwy::HWY_NAMESPACE::ShiftRight; // Every lane of exp is now (if cast to byte) {0, 0, 0, }. auto exp = ShiftRight<23>(BitCast(di, v)) - Set(di, 118); auto pow25to18bits = TableLookupBytes( LoadDup128(di, reinterpret_cast(k2to512powers_25to18bits)), exp); auto pow17to10bits = TableLookupBytes( LoadDup128(di, reinterpret_cast(k2to512powers_17to10bits)), exp); // Now, pow* contain {0, 0, 0, }. Here // we take advantage of the fact that each table has its position 0 equal to // 0. // We can now just reassemble the float. auto mul = BitCast(d, ShiftLeft<18>(pow25to18bits) | ShiftLeft<10>(pow17to10bits) | Set(di, k2to512powers_basebits)); #else // Fallback for scalar. uint32_t exp = ((BitCast(di, v).raw >> 23) - 118) & 0xf; auto mul = BitCast(d, Set(di, (k2to512powers_25to18bits[exp] << 18) | (k2to512powers_17to10bits[exp] << 10) | k2to512powers_basebits)); #endif return IfThenElse(v < Set(d, 0.0031308f), v * Set(d, 12.92f), MulAdd(pow, mul, Set(d, -0.055))); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #endif // LIB_JXL_TRANSFER_FUNCTIONS_INL_H_