// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "hwy/aligned_allocator.h" #include #include #include #include #include #include "gtest/gtest.h" #include "hwy/base.h" namespace { // Sample object that keeps track on an external counter of how many times was // the explicit constructor and destructor called. template class SampleObject { public: SampleObject() { data_[0] = 'a'; } explicit SampleObject(int* counter) : counter_(counter) { if (counter) (*counter)++; data_[0] = 'b'; } ~SampleObject() { if (counter_) (*counter_)--; } static_assert(N > sizeof(int*), "SampleObject size too small."); int* counter_ = nullptr; char data_[N - sizeof(int*)]; }; class FakeAllocator { public: // static AllocPtr and FreePtr member to be used with the alligned // allocator. These functions calls the private non-static members. static void* StaticAlloc(void* opaque, size_t bytes) { return reinterpret_cast(opaque)->Alloc(bytes); } static void StaticFree(void* opaque, void* memory) { return reinterpret_cast(opaque)->Free(memory); } // Returns the number of pending allocations to be freed. size_t PendingAllocs() { return allocs_.size(); } private: void* Alloc(size_t bytes) { void* ret = malloc(bytes); allocs_.insert(ret); return ret; } void Free(void* memory) { if (!memory) return; EXPECT_NE(allocs_.end(), allocs_.find(memory)); free(memory); allocs_.erase(memory); } std::set allocs_; }; } // namespace namespace hwy { class AlignedAllocatorTest : public testing::Test {}; TEST(AlignedAllocatorTest, FreeNullptr) { // Calling free with a nullptr is always ok. FreeAlignedBytes(/*aligned_pointer=*/nullptr, /*free_ptr=*/nullptr, /*opaque_ptr=*/nullptr); } TEST(AlignedAllocatorTest, Log2) { EXPECT_EQ(0u, detail::ShiftCount(1)); EXPECT_EQ(1u, detail::ShiftCount(2)); EXPECT_EQ(3u, detail::ShiftCount(8)); } // Allocator returns null when it detects overflow of items * sizeof(T). TEST(AlignedAllocatorTest, Overflow) { constexpr size_t max = ~size_t(0); constexpr size_t msb = (max >> 1) + 1; using Size5 = std::array; using Size10 = std::array; EXPECT_EQ(nullptr, detail::AllocateAlignedItems(max / 2, nullptr, nullptr)); EXPECT_EQ(nullptr, detail::AllocateAlignedItems(max / 3, nullptr, nullptr)); EXPECT_EQ(nullptr, detail::AllocateAlignedItems(max / 4, nullptr, nullptr)); EXPECT_EQ(nullptr, detail::AllocateAlignedItems(msb, nullptr, nullptr)); EXPECT_EQ(nullptr, detail::AllocateAlignedItems(msb + 1, nullptr, nullptr)); EXPECT_EQ(nullptr, detail::AllocateAlignedItems(msb / 4, nullptr, nullptr)); } TEST(AlignedAllocatorTest, AllocDefaultPointers) { const size_t kSize = 7777; void* ptr = AllocateAlignedBytes(kSize, /*alloc_ptr=*/nullptr, /*opaque_ptr=*/nullptr); ASSERT_NE(nullptr, ptr); // Make sure the pointer is actually aligned. EXPECT_EQ(0U, reinterpret_cast(ptr) % HWY_ALIGNMENT); char* p = static_cast(ptr); size_t ret = 0; for (size_t i = 0; i < kSize; i++) { // Performs a computation using p[] to prevent it being optimized away. p[i] = static_cast(i & 0x7F); if (i) ret += static_cast(p[i] * p[i - 1]); } EXPECT_NE(0U, ret); FreeAlignedBytes(ptr, /*free_ptr=*/nullptr, /*opaque_ptr=*/nullptr); } TEST(AlignedAllocatorTest, EmptyAlignedUniquePtr) { AlignedUniquePtr> ptr(nullptr, AlignedDeleter()); AlignedUniquePtr[]> arr(nullptr, AlignedDeleter()); } TEST(AlignedAllocatorTest, EmptyAlignedFreeUniquePtr) { AlignedFreeUniquePtr> ptr(nullptr, AlignedFreer()); AlignedFreeUniquePtr[]> arr(nullptr, AlignedFreer()); } TEST(AlignedAllocatorTest, CustomAlloc) { FakeAllocator fake_alloc; const size_t kSize = 7777; void* ptr = AllocateAlignedBytes(kSize, &FakeAllocator::StaticAlloc, &fake_alloc); ASSERT_NE(nullptr, ptr); // We should have only requested one alloc from the allocator. EXPECT_EQ(1U, fake_alloc.PendingAllocs()); // Make sure the pointer is actually aligned. EXPECT_EQ(0U, reinterpret_cast(ptr) % HWY_ALIGNMENT); FreeAlignedBytes(ptr, &FakeAllocator::StaticFree, &fake_alloc); EXPECT_EQ(0U, fake_alloc.PendingAllocs()); } TEST(AlignedAllocatorTest, MakeUniqueAlignedDefaultConstructor) { { auto ptr = MakeUniqueAligned>(); // Default constructor sets the data_[0] to 'a'. EXPECT_EQ('a', ptr->data_[0]); EXPECT_EQ(nullptr, ptr->counter_); } } TEST(AlignedAllocatorTest, MakeUniqueAligned) { int counter = 0; { // Creates the object, initializes it with the explicit constructor and // returns an unique_ptr to it. auto ptr = MakeUniqueAligned>(&counter); EXPECT_EQ(1, counter); // Custom constructor sets the data_[0] to 'b'. EXPECT_EQ('b', ptr->data_[0]); } EXPECT_EQ(0, counter); } TEST(AlignedAllocatorTest, MakeUniqueAlignedArray) { int counter = 0; { // Creates the array of objects and initializes them with the explicit // constructor. auto arr = MakeUniqueAlignedArray>(7, &counter); EXPECT_EQ(7, counter); for (size_t i = 0; i < 7; i++) { // Custom constructor sets the data_[0] to 'b'. EXPECT_EQ('b', arr[i].data_[0]) << "Where i = " << i; } } EXPECT_EQ(0, counter); } TEST(AlignedAllocatorTest, AllocSingleInt) { auto ptr = AllocateAligned(1); ASSERT_NE(nullptr, ptr.get()); EXPECT_EQ(0U, reinterpret_cast(ptr.get()) % HWY_ALIGNMENT); // Force delete of the unique_ptr now to check that it doesn't crash. ptr.reset(nullptr); EXPECT_EQ(nullptr, ptr.get()); } TEST(AlignedAllocatorTest, AllocMultipleInt) { const size_t kSize = 7777; auto ptr = AllocateAligned(kSize); ASSERT_NE(nullptr, ptr.get()); EXPECT_EQ(0U, reinterpret_cast(ptr.get()) % HWY_ALIGNMENT); // ptr[i] is actually (*ptr.get())[i] which will use the operator[] of the // underlying type chosen by AllocateAligned() for the std::unique_ptr. EXPECT_EQ(&(ptr[0]) + 1, &(ptr[1])); size_t ret = 0; for (size_t i = 0; i < kSize; i++) { // Performs a computation using ptr[] to prevent it being optimized away. ptr[i] = static_cast(i); if (i) ret += ptr[i] * ptr[i - 1]; } EXPECT_NE(0U, ret); } TEST(AlignedAllocatorTest, AllocateAlignedObjectWithoutDestructor) { int counter = 0; { // This doesn't call the constructor. auto obj = AllocateAligned>(1); obj[0].counter_ = &counter; } // Destroying the unique_ptr shouldn't have called the destructor of the // SampleObject<24>. EXPECT_EQ(0, counter); } TEST(AlignedAllocatorTest, MakeUniqueAlignedArrayWithCustomAlloc) { FakeAllocator fake_alloc; int counter = 0; { // Creates the array of objects and initializes them with the explicit // constructor. auto arr = MakeUniqueAlignedArrayWithAlloc>( 7, FakeAllocator::StaticAlloc, FakeAllocator::StaticFree, &fake_alloc, &counter); ASSERT_NE(nullptr, arr.get()); // An array should still only call a single allocation. EXPECT_EQ(1u, fake_alloc.PendingAllocs()); EXPECT_EQ(7, counter); for (size_t i = 0; i < 7; i++) { // Custom constructor sets the data_[0] to 'b'. EXPECT_EQ('b', arr[i].data_[0]) << "Where i = " << i; } } EXPECT_EQ(0, counter); EXPECT_EQ(0u, fake_alloc.PendingAllocs()); } TEST(AlignedAllocatorTest, DefaultInit) { // The test is whether this compiles. Default-init is useful for output params // and per-thread storage. std::vector> ptrs; std::vector> free_ptrs; ptrs.resize(128); free_ptrs.resize(128); // The following is to prevent elision of the pointers. std::mt19937 rng(129); // Emscripten lacks random_device. std::uniform_int_distribution dist(0, 127); ptrs[dist(rng)] = MakeUniqueAlignedArray(123); free_ptrs[dist(rng)] = AllocateAligned(456); // "Use" pointer without resorting to printf. 0 == 0. Can't shift by 64. const auto addr1 = reinterpret_cast(ptrs[dist(rng)].get()); const auto addr2 = reinterpret_cast(free_ptrs[dist(rng)].get()); constexpr size_t kBits = sizeof(uintptr_t) * 8; EXPECT_EQ((addr1 >> (kBits - 1)) >> (kBits - 1), (addr2 >> (kBits - 1)) >> (kBits - 1)); } } // namespace hwy // Ought not to be necessary, but without this, no tests run on RVV. int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }