// Copyright 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "highway_test.cc" #include "hwy/foreach_target.h" #include "hwy/highway.h" #include "hwy/nanobenchmark.h" // Unpredictable1 #include "hwy/tests/test_util-inl.h" HWY_BEFORE_NAMESPACE(); namespace hwy { namespace HWY_NAMESPACE { // For testing that ForPartialVectors reaches every possible size: using NumLanesSet = std::bitset; // Monostate pattern because ForPartialVectors takes a template argument, not a // functor by reference. static NumLanesSet* NumLanesForSize(size_t sizeof_t) { HWY_ASSERT(sizeof_t <= sizeof(uint64_t)); static NumLanesSet num_lanes[sizeof(uint64_t) + 1]; return num_lanes + sizeof_t; } static size_t* MaxLanesForSize(size_t sizeof_t) { HWY_ASSERT(sizeof_t <= sizeof(uint64_t)); static size_t num_lanes[sizeof(uint64_t) + 1] = {0}; return num_lanes + sizeof_t; } struct TestMaxLanes { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const size_t N = Lanes(d); const size_t kMax = MaxLanes(d); HWY_ASSERT(N <= kMax); HWY_ASSERT(kMax <= (HWY_MAX_BYTES / sizeof(T))); NumLanesForSize(sizeof(T))->set(N); *MaxLanesForSize(sizeof(T)) = HWY_MAX(*MaxLanesForSize(sizeof(T)), N); } }; HWY_NOINLINE void TestAllMaxLanes() { ForAllTypes(ForPartialVectors()); // Ensure ForPartialVectors visited all powers of two [1, N]. for (size_t sizeof_t : {sizeof(uint8_t), sizeof(uint16_t), sizeof(uint32_t), sizeof(uint64_t)}) { const size_t N = *MaxLanesForSize(sizeof_t); for (size_t i = 1; i <= N; i += i) { if (!NumLanesForSize(sizeof_t)->test(i)) { fprintf(stderr, "T=%d: did not visit for N=%d, max=%d\n", static_cast(sizeof_t), static_cast(i), static_cast(N)); HWY_ASSERT(false); } } } } struct TestSet { template HWY_NOINLINE void operator()(T /*unused*/, D d) { // Zero const auto v0 = Zero(d); const size_t N = Lanes(d); auto expected = AllocateAligned(N); std::fill(expected.get(), expected.get() + N, T(0)); HWY_ASSERT_VEC_EQ(d, expected.get(), v0); // Set const auto v2 = Set(d, T(2)); for (size_t i = 0; i < N; ++i) { expected[i] = 2; } HWY_ASSERT_VEC_EQ(d, expected.get(), v2); // Iota const auto vi = Iota(d, T(5)); for (size_t i = 0; i < N; ++i) { expected[i] = T(5 + i); } HWY_ASSERT_VEC_EQ(d, expected.get(), vi); // Undefined const auto vu = Undefined(d); Store(vu, d, expected.get()); } }; HWY_NOINLINE void TestAllSet() { ForAllTypes(ForPartialVectors()); } // Ensures wraparound (mod 2^bits) struct TestOverflow { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v1 = Set(d, T(1)); const auto vmax = Set(d, LimitsMax()); const auto vmin = Set(d, LimitsMin()); // Unsigned underflow / negative -> positive HWY_ASSERT_VEC_EQ(d, vmax, Sub(vmin, v1)); // Unsigned overflow / positive -> negative HWY_ASSERT_VEC_EQ(d, vmin, Add(vmax, v1)); } }; HWY_NOINLINE void TestAllOverflow() { ForIntegerTypes(ForPartialVectors()); } struct TestClamp { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto v1 = Set(d, 1); const auto v2 = Set(d, 2); HWY_ASSERT_VEC_EQ(d, v1, Clamp(v2, v0, v1)); HWY_ASSERT_VEC_EQ(d, v1, Clamp(v0, v1, v2)); } }; HWY_NOINLINE void TestAllClamp() { ForAllTypes(ForPartialVectors()); } struct TestSignBitInteger { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto all = VecFromMask(d, Eq(v0, v0)); const auto vs = SignBit(d); const auto other = Sub(vs, Set(d, 1)); // Shifting left by one => overflow, equal zero HWY_ASSERT_VEC_EQ(d, v0, Add(vs, vs)); // Verify the lower bits are zero (only +/- and logical ops are available // for all types) HWY_ASSERT_VEC_EQ(d, all, Add(vs, other)); } }; struct TestSignBitFloat { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto vs = SignBit(d); const auto vp = Set(d, 2.25); const auto vn = Set(d, -2.25); HWY_ASSERT_VEC_EQ(d, Or(vp, vs), vn); HWY_ASSERT_VEC_EQ(d, AndNot(vs, vn), vp); HWY_ASSERT_VEC_EQ(d, v0, vs); } }; HWY_NOINLINE void TestAllSignBit() { ForIntegerTypes(ForPartialVectors()); ForFloatTypes(ForPartialVectors()); } // std::isnan returns false for 0x7F..FF in clang AVX3 builds, so DIY. template bool IsNaN(TF f) { MakeUnsigned bits; memcpy(&bits, &f, sizeof(TF)); bits += bits; bits >>= 1; // clear sign bit // NaN if all exponent bits are set and the mantissa is not zero. return bits > ExponentMask(); } template HWY_NOINLINE void AssertNaN(D d, VecArg v, const char* file, int line) { using T = TFromD; const T lane = GetLane(v); if (!IsNaN(lane)) { const std::string type_name = TypeName(T(), Lanes(d)); // RVV lacks PRIu64 and MSYS still has problems with %zu, so print bytes to // avoid truncating doubles. uint8_t bytes[HWY_MAX(sizeof(T), 8)] = {0}; memcpy(bytes, &lane, sizeof(T)); Abort(file, line, "Expected %s NaN, got %E (bytes %02x %02x %02x %02x %02x %02x %02x " "%02x)", type_name.c_str(), lane, bytes[0], bytes[1], bytes[2], bytes[3], bytes[4], bytes[5], bytes[6], bytes[7]); } } #define HWY_ASSERT_NAN(d, v) AssertNaN(d, v, __FILE__, __LINE__) struct TestNaN { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v1 = Set(d, T(Unpredictable1())); const auto nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1); HWY_ASSERT_NAN(d, nan); // Arithmetic HWY_ASSERT_NAN(d, Add(nan, v1)); HWY_ASSERT_NAN(d, Add(v1, nan)); HWY_ASSERT_NAN(d, Sub(nan, v1)); HWY_ASSERT_NAN(d, Sub(v1, nan)); HWY_ASSERT_NAN(d, Mul(nan, v1)); HWY_ASSERT_NAN(d, Mul(v1, nan)); HWY_ASSERT_NAN(d, Div(nan, v1)); HWY_ASSERT_NAN(d, Div(v1, nan)); // FMA HWY_ASSERT_NAN(d, MulAdd(nan, v1, v1)); HWY_ASSERT_NAN(d, MulAdd(v1, nan, v1)); HWY_ASSERT_NAN(d, MulAdd(v1, v1, nan)); HWY_ASSERT_NAN(d, MulSub(nan, v1, v1)); HWY_ASSERT_NAN(d, MulSub(v1, nan, v1)); HWY_ASSERT_NAN(d, MulSub(v1, v1, nan)); HWY_ASSERT_NAN(d, NegMulAdd(nan, v1, v1)); HWY_ASSERT_NAN(d, NegMulAdd(v1, nan, v1)); HWY_ASSERT_NAN(d, NegMulAdd(v1, v1, nan)); HWY_ASSERT_NAN(d, NegMulSub(nan, v1, v1)); HWY_ASSERT_NAN(d, NegMulSub(v1, nan, v1)); HWY_ASSERT_NAN(d, NegMulSub(v1, v1, nan)); // Rcp/Sqrt HWY_ASSERT_NAN(d, Sqrt(nan)); // Sign manipulation HWY_ASSERT_NAN(d, Abs(nan)); HWY_ASSERT_NAN(d, Neg(nan)); HWY_ASSERT_NAN(d, CopySign(nan, v1)); HWY_ASSERT_NAN(d, CopySignToAbs(nan, v1)); // Rounding HWY_ASSERT_NAN(d, Ceil(nan)); HWY_ASSERT_NAN(d, Floor(nan)); HWY_ASSERT_NAN(d, Round(nan)); HWY_ASSERT_NAN(d, Trunc(nan)); // Logical (And/AndNot/Xor will clear NaN!) HWY_ASSERT_NAN(d, Or(nan, v1)); // Comparison HWY_ASSERT(AllFalse(d, Eq(nan, v1))); HWY_ASSERT(AllFalse(d, Gt(nan, v1))); HWY_ASSERT(AllFalse(d, Lt(nan, v1))); HWY_ASSERT(AllFalse(d, Ge(nan, v1))); HWY_ASSERT(AllFalse(d, Le(nan, v1))); // Reduction HWY_ASSERT_NAN(d, SumOfLanes(d, nan)); // TODO(janwas): re-enable after QEMU is fixed #if HWY_TARGET != HWY_RVV HWY_ASSERT_NAN(d, MinOfLanes(d, nan)); HWY_ASSERT_NAN(d, MaxOfLanes(d, nan)); #endif // Min #if HWY_ARCH_X86 && HWY_TARGET != HWY_SCALAR // x86 SIMD returns the second operand if any input is NaN. HWY_ASSERT_VEC_EQ(d, v1, Min(nan, v1)); HWY_ASSERT_VEC_EQ(d, v1, Max(nan, v1)); HWY_ASSERT_NAN(d, Min(v1, nan)); HWY_ASSERT_NAN(d, Max(v1, nan)); #elif HWY_ARCH_WASM // Should return NaN if any input is NaN, but does not for scalar. // TODO(janwas): remove once this is fixed. #elif HWY_TARGET == HWY_NEON && HWY_ARCH_ARM_V7 // ARMv7 NEON returns NaN if any input is NaN. HWY_ASSERT_NAN(d, Min(v1, nan)); HWY_ASSERT_NAN(d, Max(v1, nan)); HWY_ASSERT_NAN(d, Min(nan, v1)); HWY_ASSERT_NAN(d, Max(nan, v1)); #else // IEEE 754-2019 minimumNumber is defined as the other argument if exactly // one is NaN, and qNaN if both are. HWY_ASSERT_VEC_EQ(d, v1, Min(nan, v1)); HWY_ASSERT_VEC_EQ(d, v1, Max(nan, v1)); HWY_ASSERT_VEC_EQ(d, v1, Min(v1, nan)); HWY_ASSERT_VEC_EQ(d, v1, Max(v1, nan)); #endif HWY_ASSERT_NAN(d, Min(nan, nan)); HWY_ASSERT_NAN(d, Max(nan, nan)); } }; // For functions only available for float32 struct TestF32NaN { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v1 = Set(d, T(Unpredictable1())); const auto nan = IfThenElse(Eq(v1, Set(d, T(1))), NaN(d), v1); HWY_ASSERT_NAN(d, ApproximateReciprocal(nan)); HWY_ASSERT_NAN(d, ApproximateReciprocalSqrt(nan)); HWY_ASSERT_NAN(d, AbsDiff(nan, v1)); HWY_ASSERT_NAN(d, AbsDiff(v1, nan)); } }; HWY_NOINLINE void TestAllNaN() { ForFloatTypes(ForPartialVectors()); ForPartialVectors()(float()); } struct TestCopyAndAssign { template HWY_NOINLINE void operator()(T /*unused*/, D d) { // copy V const auto v3 = Iota(d, 3); auto v3b(v3); HWY_ASSERT_VEC_EQ(d, v3, v3b); // assign V auto v3c = Undefined(d); v3c = v3; HWY_ASSERT_VEC_EQ(d, v3, v3c); } }; HWY_NOINLINE void TestAllCopyAndAssign() { ForAllTypes(ForPartialVectors()); } struct TestGetLane { template HWY_NOINLINE void operator()(T /*unused*/, D d) { HWY_ASSERT_EQ(T(0), GetLane(Zero(d))); HWY_ASSERT_EQ(T(1), GetLane(Set(d, 1))); } }; HWY_NOINLINE void TestAllGetLane() { ForAllTypes(ForPartialVectors()); } struct TestDFromV { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); using D0 = DFromV; // not necessarily same as D const auto v0b = And(v0, Set(D0(), 1)); // but vectors can interoperate HWY_ASSERT_VEC_EQ(d, v0, v0b); } }; HWY_NOINLINE void TestAllDFromV() { ForAllTypes(ForPartialVectors()); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace hwy HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace hwy { HWY_BEFORE_TEST(HighwayTest); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllMaxLanes); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllSet); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllOverflow); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllClamp); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllSignBit); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllNaN); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllCopyAndAssign); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllGetLane); HWY_EXPORT_AND_TEST_P(HighwayTest, TestAllDFromV); } // namespace hwy // Ought not to be necessary, but without this, no tests run on RVV. int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); } #endif