// Copyright 2019 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "hwy/nanobenchmark.h" #include #include #include #include // abort #include // memcpy #include // clock_gettime #include // sort #include #include #include #include // iota #include #include #include #if defined(_WIN32) || defined(_WIN64) #ifndef NOMINMAX #define NOMINMAX #endif // NOMINMAX #include #endif #if defined(__APPLE__) #include #include #endif #if defined(__HAIKU__) #include #endif #include "hwy/base.h" #if HWY_ARCH_PPC && defined(__GLIBC__) #include // NOLINT __ppc_get_timebase_freq #elif HWY_ARCH_X86 #if HWY_COMPILER_MSVC #include #else #include // NOLINT #endif // HWY_COMPILER_MSVC #endif // HWY_ARCH_X86 namespace hwy { namespace { namespace timer { // Ticks := platform-specific timer values (CPU cycles on x86). Must be // unsigned to guarantee wraparound on overflow. using Ticks = uint64_t; // Start/Stop return absolute timestamps and must be placed immediately before // and after the region to measure. We provide separate Start/Stop functions // because they use different fences. // // Background: RDTSC is not 'serializing'; earlier instructions may complete // after it, and/or later instructions may complete before it. 'Fences' ensure // regions' elapsed times are independent of such reordering. The only // documented unprivileged serializing instruction is CPUID, which acts as a // full fence (no reordering across it in either direction). Unfortunately // the latency of CPUID varies wildly (perhaps made worse by not initializing // its EAX input). Because it cannot reliably be deducted from the region's // elapsed time, it must not be included in the region to measure (i.e. // between the two RDTSC). // // The newer RDTSCP is sometimes described as serializing, but it actually // only serves as a half-fence with release semantics. Although all // instructions in the region will complete before the final timestamp is // captured, subsequent instructions may leak into the region and increase the // elapsed time. Inserting another fence after the final RDTSCP would prevent // such reordering without affecting the measured region. // // Fortunately, such a fence exists. The LFENCE instruction is only documented // to delay later loads until earlier loads are visible. However, Intel's // reference manual says it acts as a full fence (waiting until all earlier // instructions have completed, and delaying later instructions until it // completes). AMD assigns the same behavior to MFENCE. // // We need a fence before the initial RDTSC to prevent earlier instructions // from leaking into the region, and arguably another after RDTSC to avoid // region instructions from completing before the timestamp is recorded. // When surrounded by fences, the additional RDTSCP half-fence provides no // benefit, so the initial timestamp can be recorded via RDTSC, which has // lower overhead than RDTSCP because it does not read TSC_AUX. In summary, // we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE. // // Using Start+Start leads to higher variance and overhead than Stop+Stop. // However, Stop+Stop includes an LFENCE in the region measurements, which // adds a delay dependent on earlier loads. The combination of Start+Stop // is faster than Start+Start and more consistent than Stop+Stop because // the first LFENCE already delayed subsequent loads before the measured // region. This combination seems not to have been considered in prior work: // http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c // // Note: performance counters can measure 'exact' instructions-retired or // (unhalted) cycle counts. The RDPMC instruction is not serializing and also // requires fences. Unfortunately, it is not accessible on all OSes and we // prefer to avoid kernel-mode drivers. Performance counters are also affected // by several under/over-count errata, so we use the TSC instead. // Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds, // divide by InvariantTicksPerSecond. inline Ticks Start() { Ticks t; #if HWY_ARCH_PPC && defined(__GLIBC__) asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268)); #elif HWY_ARCH_X86 && HWY_COMPILER_MSVC _ReadWriteBarrier(); _mm_lfence(); _ReadWriteBarrier(); t = __rdtsc(); _ReadWriteBarrier(); _mm_lfence(); _ReadWriteBarrier(); #elif HWY_ARCH_X86_64 asm volatile( "lfence\n\t" "rdtsc\n\t" "shl $32, %%rdx\n\t" "or %%rdx, %0\n\t" "lfence" : "=a"(t) : // "memory" avoids reordering. rdx = TSC >> 32. // "cc" = flags modified by SHL. : "rdx", "memory", "cc"); #elif HWY_ARCH_RVV asm volatile("rdcycle %0" : "=r"(t)); #elif defined(_WIN32) || defined(_WIN64) LARGE_INTEGER counter; (void)QueryPerformanceCounter(&counter); t = counter.QuadPart; #elif defined(__APPLE__) t = mach_absolute_time(); #elif defined(__HAIKU__) t = system_time_nsecs(); // since boot #else // POSIX timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); t = static_cast(ts.tv_sec * 1000000000LL + ts.tv_nsec); #endif return t; } inline Ticks Stop() { uint64_t t; #if HWY_ARCH_PPC && defined(__GLIBC__) asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268)); #elif HWY_ARCH_X86 && HWY_COMPILER_MSVC _ReadWriteBarrier(); unsigned aux; t = __rdtscp(&aux); _ReadWriteBarrier(); _mm_lfence(); _ReadWriteBarrier(); #elif HWY_ARCH_X86_64 // Use inline asm because __rdtscp generates code to store TSC_AUX (ecx). asm volatile( "rdtscp\n\t" "shl $32, %%rdx\n\t" "or %%rdx, %0\n\t" "lfence" : "=a"(t) : // "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32. // "cc" = flags modified by SHL. : "rcx", "rdx", "memory", "cc"); #else t = Start(); #endif return t; } } // namespace timer namespace robust_statistics { // Sorts integral values in ascending order (e.g. for Mode). About 3x faster // than std::sort for input distributions with very few unique values. template void CountingSort(T* values, size_t num_values) { // Unique values and their frequency (similar to flat_map). using Unique = std::pair; std::vector unique; for (size_t i = 0; i < num_values; ++i) { const T value = values[i]; const auto pos = std::find_if(unique.begin(), unique.end(), [value](const Unique u) { return u.first == value; }); if (pos == unique.end()) { unique.push_back(std::make_pair(value, 1)); } else { ++pos->second; } } // Sort in ascending order of value (pair.first). std::sort(unique.begin(), unique.end()); // Write that many copies of each unique value to the array. T* HWY_RESTRICT p = values; for (const auto& value_count : unique) { std::fill(p, p + value_count.second, value_count.first); p += value_count.second; } NANOBENCHMARK_CHECK(p == values + num_values); } // @return i in [idx_begin, idx_begin + half_count) that minimizes // sorted[i + half_count] - sorted[i]. template size_t MinRange(const T* const HWY_RESTRICT sorted, const size_t idx_begin, const size_t half_count) { T min_range = std::numeric_limits::max(); size_t min_idx = 0; for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) { NANOBENCHMARK_CHECK(sorted[idx] <= sorted[idx + half_count]); const T range = sorted[idx + half_count] - sorted[idx]; if (range < min_range) { min_range = range; min_idx = idx; } } return min_idx; } // Returns an estimate of the mode by calling MinRange on successively // halved intervals. "sorted" must be in ascending order. This is the // Half Sample Mode estimator proposed by Bickel in "On a fast, robust // estimator of the mode", with complexity O(N log N). The mode is less // affected by outliers in highly-skewed distributions than the median. // The averaging operation below assumes "T" is an unsigned integer type. template T ModeOfSorted(const T* const HWY_RESTRICT sorted, const size_t num_values) { size_t idx_begin = 0; size_t half_count = num_values / 2; while (half_count > 1) { idx_begin = MinRange(sorted, idx_begin, half_count); half_count >>= 1; } const T x = sorted[idx_begin + 0]; if (half_count == 0) { return x; } NANOBENCHMARK_CHECK(half_count == 1); const T average = (x + sorted[idx_begin + 1] + 1) / 2; return average; } // Returns the mode. Side effect: sorts "values". template T Mode(T* values, const size_t num_values) { CountingSort(values, num_values); return ModeOfSorted(values, num_values); } template T Mode(T (&values)[N]) { return Mode(&values[0], N); } // Returns the median value. Side effect: sorts "values". template T Median(T* values, const size_t num_values) { NANOBENCHMARK_CHECK(!values->empty()); std::sort(values, values + num_values); const size_t half = num_values / 2; // Odd count: return middle if (num_values % 2) { return values[half]; } // Even count: return average of middle two. return (values[half] + values[half - 1] + 1) / 2; } // Returns a robust measure of variability. template T MedianAbsoluteDeviation(const T* values, const size_t num_values, const T median) { NANOBENCHMARK_CHECK(num_values != 0); std::vector abs_deviations; abs_deviations.reserve(num_values); for (size_t i = 0; i < num_values; ++i) { const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median)); abs_deviations.push_back(static_cast(abs)); } return Median(abs_deviations.data(), num_values); } } // namespace robust_statistics } // namespace namespace platform { namespace { // Prevents the compiler from eliding the computations that led to "output". template inline void PreventElision(T&& output) { #if HWY_COMPILER_MSVC == 0 // Works by indicating to the compiler that "output" is being read and // modified. The +r constraint avoids unnecessary writes to memory, but only // works for built-in types (typically FuncOutput). asm volatile("" : "+r"(output) : : "memory"); #else // MSVC does not support inline assembly anymore (and never supported GCC's // RTL constraints). Self-assignment with #pragma optimize("off") might be // expected to prevent elision, but it does not with MSVC 2015. Type-punning // with volatile pointers generates inefficient code on MSVC 2017. static std::atomic dummy(T{}); dummy.store(output, std::memory_order_relaxed); #endif } #if HWY_ARCH_X86 void Cpuid(const uint32_t level, const uint32_t count, uint32_t* HWY_RESTRICT abcd) { #if HWY_COMPILER_MSVC int regs[4]; __cpuidex(regs, level, count); for (int i = 0; i < 4; ++i) { abcd[i] = regs[i]; } #else uint32_t a; uint32_t b; uint32_t c; uint32_t d; __cpuid_count(level, count, a, b, c, d); abcd[0] = a; abcd[1] = b; abcd[2] = c; abcd[3] = d; #endif } bool HasRDTSCP() { uint32_t abcd[4]; Cpuid(0x80000001U, 0, abcd); // Extended feature flags return (abcd[3] & (1u << 27)) != 0; // RDTSCP } std::string BrandString() { char brand_string[49]; std::array abcd; // Check if brand string is supported (it is on all reasonable Intel/AMD) Cpuid(0x80000000U, 0, abcd.data()); if (abcd[0] < 0x80000004U) { return std::string(); } for (size_t i = 0; i < 3; ++i) { Cpuid(static_cast(0x80000002U + i), 0, abcd.data()); memcpy(brand_string + i * 16, abcd.data(), sizeof(abcd)); } brand_string[48] = 0; return brand_string; } // Returns the frequency quoted inside the brand string. This does not // account for throttling nor Turbo Boost. double NominalClockRate() { const std::string& brand_string = BrandString(); // Brand strings include the maximum configured frequency. These prefixes are // defined by Intel CPUID documentation. const char* prefixes[3] = {"MHz", "GHz", "THz"}; const double multipliers[3] = {1E6, 1E9, 1E12}; for (size_t i = 0; i < 3; ++i) { const size_t pos_prefix = brand_string.find(prefixes[i]); if (pos_prefix != std::string::npos) { const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1); if (pos_space != std::string::npos) { const std::string digits = brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1); return std::stod(digits) * multipliers[i]; } } } return 0.0; } #endif // HWY_ARCH_X86 } // namespace HWY_DLLEXPORT double InvariantTicksPerSecond() { #if HWY_ARCH_PPC && defined(__GLIBC__) return double(__ppc_get_timebase_freq()); #elif HWY_ARCH_X86 // We assume the TSC is invariant; it is on all recent Intel/AMD CPUs. return NominalClockRate(); #elif defined(_WIN32) || defined(_WIN64) LARGE_INTEGER freq; (void)QueryPerformanceFrequency(&freq); return double(freq.QuadPart); #elif defined(__APPLE__) // https://developer.apple.com/library/mac/qa/qa1398/_index.html mach_timebase_info_data_t timebase; (void)mach_timebase_info(&timebase); return double(timebase.denom) / timebase.numer * 1E9; #else // TODO(janwas): ARM? Unclear how to reliably query cntvct_el0 frequency. return 1E9; // Haiku and clock_gettime return nanoseconds. #endif } HWY_DLLEXPORT double Now() { static const double mul = 1.0 / InvariantTicksPerSecond(); return static_cast(timer::Start()) * mul; } HWY_DLLEXPORT uint64_t TimerResolution() { // Nested loop avoids exceeding stack/L1 capacity. timer::Ticks repetitions[Params::kTimerSamples]; for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) { timer::Ticks samples[Params::kTimerSamples]; for (size_t i = 0; i < Params::kTimerSamples; ++i) { const timer::Ticks t0 = timer::Start(); const timer::Ticks t1 = timer::Stop(); samples[i] = t1 - t0; } repetitions[rep] = robust_statistics::Mode(samples); } return robust_statistics::Mode(repetitions); } } // namespace platform namespace { static const timer::Ticks timer_resolution = platform::TimerResolution(); // Estimates the expected value of "lambda" values with a variable number of // samples until the variability "rel_mad" is less than "max_rel_mad". template timer::Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad, const Params& p, const Lambda& lambda) { // Choose initial samples_per_eval based on a single estimated duration. timer::Ticks t0 = timer::Start(); lambda(); timer::Ticks t1 = timer::Stop(); timer::Ticks est = t1 - t0; static const double ticks_per_second = platform::InvariantTicksPerSecond(); const size_t ticks_per_eval = static_cast(ticks_per_second * p.seconds_per_eval); size_t samples_per_eval = est == 0 ? p.min_samples_per_eval : static_cast(ticks_per_eval / est); samples_per_eval = HWY_MAX(samples_per_eval, p.min_samples_per_eval); std::vector samples; samples.reserve(1 + samples_per_eval); samples.push_back(est); // Percentage is too strict for tiny differences, so also allow a small // absolute "median absolute deviation". const timer::Ticks max_abs_mad = (timer_resolution + 99) / 100; *rel_mad = 0.0; // ensure initialized for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) { samples.reserve(samples.size() + samples_per_eval); for (size_t i = 0; i < samples_per_eval; ++i) { t0 = timer::Start(); lambda(); t1 = timer::Stop(); samples.push_back(t1 - t0); } if (samples.size() >= p.min_mode_samples) { est = robust_statistics::Mode(samples.data(), samples.size()); } else { // For "few" (depends also on the variance) samples, Median is safer. est = robust_statistics::Median(samples.data(), samples.size()); } NANOBENCHMARK_CHECK(est != 0); // Median absolute deviation (mad) is a robust measure of 'variability'. const timer::Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation( samples.data(), samples.size(), est); *rel_mad = static_cast(abs_mad) / static_cast(est); if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) { if (p.verbose) { printf("%6" PRIu64 " samples => %5" PRIu64 " (abs_mad=%4" PRIu64 ", rel_mad=%4.2f%%)\n", static_cast(samples.size()), static_cast(est), static_cast(abs_mad), *rel_mad * 100.0); } return est; } } if (p.verbose) { printf("WARNING: rel_mad=%4.2f%% still exceeds %4.2f%% after %6" PRIu64 " samples.\n", *rel_mad * 100.0, max_rel_mad * 100.0, static_cast(samples.size())); } return est; } using InputVec = std::vector; // Returns vector of unique input values. InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) { InputVec unique(inputs, inputs + num_inputs); std::sort(unique.begin(), unique.end()); unique.erase(std::unique(unique.begin(), unique.end()), unique.end()); return unique; } // Returns how often we need to call func for sufficient precision. size_t NumSkip(const Func func, const uint8_t* arg, const InputVec& unique, const Params& p) { // Min elapsed ticks for any input. timer::Ticks min_duration = ~timer::Ticks(0); for (const FuncInput input : unique) { double rel_mad; const timer::Ticks total = SampleUntilStable( p.target_rel_mad, &rel_mad, p, [func, arg, input]() { platform::PreventElision(func(arg, input)); }); min_duration = HWY_MIN(min_duration, total - timer_resolution); } // Number of repetitions required to reach the target resolution. const size_t max_skip = p.precision_divisor; // Number of repetitions given the estimated duration. const size_t num_skip = min_duration == 0 ? 0 : static_cast((max_skip + min_duration - 1) / min_duration); if (p.verbose) { printf("res=%" PRIu64 " max_skip=%" PRIu64 " min_dur=%" PRIu64 " num_skip=%" PRIu64 "\n", static_cast(timer_resolution), static_cast(max_skip), static_cast(min_duration), static_cast(num_skip)); } return num_skip; } // Replicates inputs until we can omit "num_skip" occurrences of an input. InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs, const size_t num_unique, const size_t num_skip, const Params& p) { InputVec full; if (num_unique == 1) { full.assign(p.subset_ratio * num_skip, inputs[0]); return full; } full.reserve(p.subset_ratio * num_skip * num_inputs); for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) { full.insert(full.end(), inputs, inputs + num_inputs); } std::mt19937 rng; std::shuffle(full.begin(), full.end(), rng); return full; } // Copies the "full" to "subset" in the same order, but with "num_skip" // randomly selected occurrences of "input_to_skip" removed. void FillSubset(const InputVec& full, const FuncInput input_to_skip, const size_t num_skip, InputVec* subset) { const size_t count = static_cast(std::count(full.begin(), full.end(), input_to_skip)); // Generate num_skip random indices: which occurrence to skip. std::vector omit(count); std::iota(omit.begin(), omit.end(), 0); // omit[] is the same on every call, but that's OK because they identify the // Nth instance of input_to_skip, so the position within full[] differs. std::mt19937 rng; std::shuffle(omit.begin(), omit.end(), rng); omit.resize(num_skip); std::sort(omit.begin(), omit.end()); uint32_t occurrence = ~0u; // 0 after preincrement size_t idx_omit = 0; // cursor within omit[] size_t idx_subset = 0; // cursor within *subset for (const FuncInput next : full) { if (next == input_to_skip) { ++occurrence; // Haven't removed enough already if (idx_omit < num_skip) { // This one is up for removal if (occurrence == omit[idx_omit]) { ++idx_omit; continue; } } } if (idx_subset < subset->size()) { (*subset)[idx_subset++] = next; } } NANOBENCHMARK_CHECK(idx_subset == subset->size()); NANOBENCHMARK_CHECK(idx_omit == omit.size()); NANOBENCHMARK_CHECK(occurrence == count - 1); } // Returns total ticks elapsed for all inputs. timer::Ticks TotalDuration(const Func func, const uint8_t* arg, const InputVec* inputs, const Params& p, double* max_rel_mad) { double rel_mad; const timer::Ticks duration = SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() { for (const FuncInput input : *inputs) { platform::PreventElision(func(arg, input)); } }); *max_rel_mad = HWY_MAX(*max_rel_mad, rel_mad); return duration; } // (Nearly) empty Func for measuring timer overhead/resolution. HWY_NOINLINE FuncOutput EmptyFunc(const void* /*arg*/, const FuncInput input) { return input; } // Returns overhead of accessing inputs[] and calling a function; this will // be deducted from future TotalDuration return values. timer::Ticks Overhead(const uint8_t* arg, const InputVec* inputs, const Params& p) { double rel_mad; // Zero tolerance because repeatability is crucial and EmptyFunc is fast. return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() { for (const FuncInput input : *inputs) { platform::PreventElision(EmptyFunc(arg, input)); } }); } } // namespace HWY_DLLEXPORT int Unpredictable1() { return timer::Start() != ~0ULL; } HWY_DLLEXPORT size_t Measure(const Func func, const uint8_t* arg, const FuncInput* inputs, const size_t num_inputs, Result* results, const Params& p) { NANOBENCHMARK_CHECK(num_inputs != 0); #if HWY_ARCH_X86 if (!platform::HasRDTSCP()) { fprintf(stderr, "CPU '%s' does not support RDTSCP, skipping benchmark.\n", platform::BrandString().c_str()); return 0; } #endif const InputVec& unique = UniqueInputs(inputs, num_inputs); const size_t num_skip = NumSkip(func, arg, unique, p); // never 0 if (num_skip == 0) return 0; // NumSkip already printed error message // (slightly less work on x86 to cast from signed integer) const float mul = 1.0f / static_cast(static_cast(num_skip)); const InputVec& full = ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p); InputVec subset(full.size() - num_skip); const timer::Ticks overhead = Overhead(arg, &full, p); const timer::Ticks overhead_skip = Overhead(arg, &subset, p); if (overhead < overhead_skip) { fprintf(stderr, "Measurement failed: overhead %" PRIu64 " < %" PRIu64 "\n", static_cast(overhead), static_cast(overhead_skip)); return 0; } if (p.verbose) { printf("#inputs=%5" PRIu64 ",%5" PRIu64 " overhead=%5" PRIu64 ",%5" PRIu64 "\n", static_cast(full.size()), static_cast(subset.size()), static_cast(overhead), static_cast(overhead_skip)); } double max_rel_mad = 0.0; const timer::Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad); for (size_t i = 0; i < unique.size(); ++i) { FillSubset(full, unique[i], num_skip, &subset); const timer::Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad); if (total < total_skip) { fprintf(stderr, "Measurement failed: total %" PRIu64 " < %" PRIu64 "\n", static_cast(total), static_cast(total_skip)); return 0; } const timer::Ticks duration = (total - overhead) - (total_skip - overhead_skip); results[i].input = unique[i]; results[i].ticks = static_cast(duration) * mul; results[i].variability = static_cast(max_rel_mad); } return unique.size(); } } // namespace hwy