// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Re-implementation of //tools/ssimulacra.tct using jxl's // ImageF library instead of opencv. #include "tools/ssimulacra.h" #include #include "lib/jxl/gauss_blur.h" #include "lib/jxl/image_ops.h" namespace ssimulacra { namespace { using jxl::Image3F; using jxl::ImageF; static const float kC1 = 0.0001f; static const float kC2 = 0.0004f; static const int kNumScales = 6; // Premultiplied by chroma weight 0.2 static const double kScaleWeights[kNumScales][3] = { {0.04480, 0.00300, 0.00300}, {0.28560, 0.00896, 0.00896}, {0.30010, 0.05712, 0.05712}, {0.23630, 0.06002, 0.06002}, {0.13330, 0.06726, 0.06726}, {0.10000, 0.05000, 0.05000}, }; // Premultiplied by min weights 0.1, 0.005, 0.005 const double kMinScaleWeights[kNumScales][3] = { {0.02000, 0.00005, 0.00005}, {0.03000, 0.00025, 0.00025}, {0.02500, 0.00100, 0.00100}, {0.02000, 0.00150, 0.00150}, {0.01200, 0.00175, 0.00175}, {0.00500, 0.00175, 0.00175}, }; const double kEdgeWeight[3] = {1.5, 0.1, 0.1}; const double kGridWeight[3] = {1.0, 0.1, 0.1}; inline void Rgb2Lab(float r, float g, float b, float* L, float* A, float* B) { const float epsilon = 0.00885645167903563081f; const float s = 0.13793103448275862068f; const float k = 7.78703703703703703703f; float fx = (r * 0.43393624408206207259f + g * 0.37619779063650710152f + b * 0.18983429773803261441f); float fy = (r * 0.2126729f + g * 0.7151522f + b * 0.0721750f); float fz = (r * 0.01775381083562901744f + g * 0.10945087235996326905f + b * 0.87263921028466483011f); const float gamma = 1.0f / 3.0f; float X = (fx > epsilon) ? powf(fx, gamma) - s : k * fx; float Y = (fy > epsilon) ? powf(fy, gamma) - s : k * fy; float Z = (fz > epsilon) ? powf(fz, gamma) - s : k * fz; *L = Y * 1.16f; *A = (0.39181818181818181818f + 2.27272727272727272727f * (X - Y)); *B = (0.49045454545454545454f + 0.90909090909090909090f * (Y - Z)); } Image3F Rgb2Lab(const Image3F& in) { Image3F out(in.xsize(), in.ysize()); for (size_t y = 0; y < in.ysize(); ++y) { const float* JXL_RESTRICT row_in0 = in.PlaneRow(0, y); const float* JXL_RESTRICT row_in1 = in.PlaneRow(1, y); const float* JXL_RESTRICT row_in2 = in.PlaneRow(2, y); float* JXL_RESTRICT row_out0 = out.PlaneRow(0, y); float* JXL_RESTRICT row_out1 = out.PlaneRow(1, y); float* JXL_RESTRICT row_out2 = out.PlaneRow(2, y); for (size_t x = 0; x < in.xsize(); ++x) { Rgb2Lab(row_in0[x], row_in1[x], row_in2[x], &row_out0[x], &row_out1[x], &row_out2[x]); } } return out; } Image3F Downsample(const Image3F& in, size_t fx, size_t fy) { const size_t out_xsize = (in.xsize() + fx - 1) / fx; const size_t out_ysize = (in.ysize() + fy - 1) / fy; Image3F out(out_xsize, out_ysize); const float normalize = 1.0f / (fx * fy); for (size_t c = 0; c < 3; ++c) { for (size_t oy = 0; oy < out_ysize; ++oy) { float* JXL_RESTRICT row_out = out.PlaneRow(c, oy); for (size_t ox = 0; ox < out_xsize; ++ox) { float sum = 0.0f; for (size_t iy = 0; iy < fy; ++iy) { for (size_t ix = 0; ix < fx; ++ix) { const size_t x = std::min(ox * fx + ix, in.xsize() - 1); const size_t y = std::min(oy * fy + iy, in.ysize() - 1); sum += in.PlaneRow(c, y)[x]; } } row_out[ox] = sum * normalize; } } } return out; } void Multiply(const Image3F& a, const Image3F& b, Image3F* mul) { for (size_t c = 0; c < 3; ++c) { for (size_t y = 0; y < a.ysize(); ++y) { const float* JXL_RESTRICT in1 = a.PlaneRow(c, y); const float* JXL_RESTRICT in2 = b.PlaneRow(c, y); float* JXL_RESTRICT out = mul->PlaneRow(c, y); for (size_t x = 0; x < a.xsize(); ++x) { out[x] = in1[x] * in2[x]; } } } } void RowColAvgP2(const ImageF& in, double* rp2, double* cp2) { std::vector ravg(in.ysize()); std::vector cavg(in.xsize()); for (size_t y = 0; y < in.ysize(); ++y) { auto row = in.Row(y); for (size_t x = 0; x < in.xsize(); ++x) { const float val = row[x]; ravg[y] += val; cavg[x] += val; } } std::sort(ravg.begin(), ravg.end()); std::sort(cavg.begin(), cavg.end()); *rp2 = ravg[ravg.size() / 50] / in.xsize(); *cp2 = cavg[cavg.size() / 50] / in.ysize(); } class StreamingAverage { public: void Add(const float v) { // Numerically stable method. double delta = v - result_; n_ += 1; result_ += delta / n_; } double Get() const { return result_; } private: double result_ = 0.0; size_t n_ = 0; }; void EdgeDiffMap(const Image3F& img1, const Image3F& mu1, const Image3F& img2, const Image3F& mu2, Image3F* out, double* plane_avg) { for (size_t c = 0; c < 3; ++c) { StreamingAverage avg; for (size_t y = 0; y < img1.ysize(); ++y) { const float* JXL_RESTRICT row1 = img1.PlaneRow(c, y); const float* JXL_RESTRICT row2 = img2.PlaneRow(c, y); const float* JXL_RESTRICT rowm1 = mu1.PlaneRow(c, y); const float* JXL_RESTRICT rowm2 = mu2.PlaneRow(c, y); float* JXL_RESTRICT row_out = out->PlaneRow(c, y); for (size_t x = 0; x < img1.xsize(); ++x) { float edgediff = std::max( std::abs(row2[x] - rowm2[x]) - std::abs(row1[x] - rowm1[x]), 0.0f); row_out[x] = 1.0f - edgediff; avg.Add(row_out[x]); } } plane_avg[c] = avg.Get(); } } // Temporary storage for Gaussian blur, reused for multiple images. class Blur { public: Blur(const size_t xsize, const size_t ysize) : rg_(jxl::CreateRecursiveGaussian(1.5)), temp_(xsize, ysize) {} void operator()(const ImageF& in, ImageF* JXL_RESTRICT out) { jxl::ThreadPool* null_pool = nullptr; FastGaussian(rg_, in, null_pool, &temp_, out); } Image3F operator()(const Image3F& in) { Image3F out(in.xsize(), in.ysize()); operator()(in.Plane(0), &out.Plane(0)); operator()(in.Plane(1), &out.Plane(1)); operator()(in.Plane(2), &out.Plane(2)); return out; } // Allows reusing across scales. void ShrinkTo(const size_t xsize, const size_t ysize) { temp_.ShrinkTo(xsize, ysize); } private: hwy::AlignedUniquePtr rg_; ImageF temp_; }; void SSIMMap(const Image3F& m1, const Image3F& m2, const Image3F& s11, const Image3F& s22, const Image3F& s12, Image3F* out, double* plane_averages) { for (size_t c = 0; c < 3; ++c) { StreamingAverage avg; for (size_t y = 0; y < out->ysize(); ++y) { const float* JXL_RESTRICT row_m1 = m1.PlaneRow(c, y); const float* JXL_RESTRICT row_m2 = m2.PlaneRow(c, y); const float* JXL_RESTRICT row_s11 = s11.PlaneRow(c, y); const float* JXL_RESTRICT row_s22 = s22.PlaneRow(c, y); const float* JXL_RESTRICT row_s12 = s12.PlaneRow(c, y); float* JXL_RESTRICT row_out = out->PlaneRow(c, y); for (size_t x = 0; x < out->xsize(); ++x) { float mu1 = row_m1[x]; float mu2 = row_m2[x]; float mu11 = mu1 * mu1; float mu22 = mu2 * mu2; float mu12 = mu1 * mu2; float nom_m = 2 * mu12 + kC1; float nom_s = 2 * (row_s12[x] - mu12) + kC2; float denom_m = mu11 + mu22 + kC1; float denom_s = (row_s11[x] - mu11) + (row_s22[x] - mu22) + kC2; row_out[x] = (nom_m * nom_s) / (denom_m * denom_s); avg.Add(row_out[x]); } } plane_averages[c] = avg.Get(); } } } // namespace double Ssimulacra::Score() const { double ssim = 0.0; double ssim_max = 0.0; for (size_t c = 0; c < 3; ++c) { for (size_t scale = 0; scale < scales.size(); ++scale) { ssim += kScaleWeights[scale][c] * scales[scale].avg_ssim[c]; ssim_max += kScaleWeights[scale][c]; ssim += kMinScaleWeights[scale][c] * scales[scale].min_ssim[c]; ssim_max += kMinScaleWeights[scale][c]; } if (!simple) { ssim += kEdgeWeight[c] * avg_edgediff[c]; ssim_max += kEdgeWeight[c]; ssim += kGridWeight[c] * (row_p2[0][c] + row_p2[1][c] + col_p2[0][c] + col_p2[1][c]); ssim_max += 4.0 * kGridWeight[c]; } } double dssim = ssim_max / ssim - 1.0; return std::min(1.0, std::max(0.0, dssim)); } inline void PrintItem(const char* name, int scale, const double* vals, const double* w) { printf("scale %d %s = [%.10f %.10f %.10f] w = [%.5f %.5f %.5f]\n", scale, name, vals[0], vals[1], vals[2], w[0], w[1], w[2]); } void Ssimulacra::PrintDetails() const { for (size_t s = 0; s < scales.size(); ++s) { if (s < kNumScales) { PrintItem("avg ssim", s, scales[s].avg_ssim, kScaleWeights[s]); PrintItem("min ssim", s, scales[s].min_ssim, kMinScaleWeights[s]); } if (s == 0 && !simple) { PrintItem("avg edif", s, avg_edgediff, kEdgeWeight); PrintItem("rp2 ssim", s, &row_p2[0][0], kGridWeight); PrintItem("cp2 ssim", s, &col_p2[0][0], kGridWeight); PrintItem("rp2 edif", s, &row_p2[1][0], kGridWeight); PrintItem("cp2 edif", s, &col_p2[1][0], kGridWeight); } } } Ssimulacra ComputeDiff(const Image3F& orig, const Image3F& distorted, bool simple) { Ssimulacra ssimulacra; ssimulacra.simple = simple; Image3F img1 = Rgb2Lab(orig); Image3F img2 = Rgb2Lab(distorted); Image3F mul(orig.xsize(), orig.ysize()); Blur blur(img1.xsize(), img1.ysize()); for (int scale = 0; scale < kNumScales; scale++) { if (img1.xsize() < 8 || img1.ysize() < 8) { break; } if (scale) { img1 = Downsample(img1, 2, 2); img2 = Downsample(img2, 2, 2); } mul.ShrinkTo(img1.xsize(), img2.ysize()); blur.ShrinkTo(img1.xsize(), img2.ysize()); Multiply(img1, img1, &mul); Image3F sigma1_sq = blur(mul); Multiply(img2, img2, &mul); Image3F sigma2_sq = blur(mul); Multiply(img1, img2, &mul); Image3F sigma12 = blur(mul); Image3F mu1 = blur(img1); Image3F mu2 = blur(img2); // Reuse mul as "ssim_map". SsimulacraScale sscale; SSIMMap(mu1, mu2, sigma1_sq, sigma2_sq, sigma12, &mul, sscale.avg_ssim); const Image3F ssim_map = Downsample(mul, 4, 4); for (size_t c = 0; c < 3; c++) { float minval, maxval; ImageMinMax(ssim_map.Plane(c), &minval, &maxval); sscale.min_ssim[c] = static_cast(minval); } ssimulacra.scales.push_back(sscale); if (scale == 0 && !simple) { Image3F* edgediff = &sigma1_sq; // reuse EdgeDiffMap(img1, mu1, img2, mu2, edgediff, ssimulacra.avg_edgediff); for (size_t c = 0; c < 3; c++) { RowColAvgP2(ssim_map.Plane(c), &ssimulacra.row_p2[0][c], &ssimulacra.col_p2[0][c]); RowColAvgP2(edgediff->Plane(c), &ssimulacra.row_p2[1][c], &ssimulacra.col_p2[1][c]); } } } return ssimulacra; } } // namespace ssimulacra