#!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 # ----------------------------------------------------------------------------- # Copyright 2021 Arm Limited # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # ----------------------------------------------------------------------------- """ The ``astc_trace_analysis`` utility provides a tool to analyze trace files. WARNING: Trace files are an engineering tool, and not part of the standard product, so traces and their associated tools are volatile and may change significantly without notice. """ import argparse from collections import defaultdict as ddict import json import numpy as np import sys QUANT_TABLE = { 0: 2, 1: 3, 2: 4, 3: 5, 4: 6, 5: 8, 6: 10, 7: 12, 8: 16, 9: 20, 10: 24, 11: 32 } CHANNEL_TABLE = { 0: "R", 1: "G", 2: "B", 3: "A" } class Trace: def __init__(self, block_x, block_y, block_z): self.block_x = block_x self.block_y = block_y self.block_z = block_z self.blocks = [] def add_block(self, block): self.blocks.append(block) def __getitem__(self, i): return self.blocks[i] def __delitem__(self, i): del self.blocks[i] def __len__(self): return len(self.blocks) class Block: def __init__(self, pos_x, pos_y, pos_z, error_target): self.pos_x = pos_x self.pos_y = pos_y self.pos_z = pos_z self.raw_min = None self.raw_max = None self.ldr_min = None self.ldr_max = None self.error_target = error_target self.passes = [] self.qualityHit = None def add_minimums(self, r, g, b, a): self.raw_min = (r, g, b, a) def ldr(x): cmax = 65535.0 return int((r / cmax) * 255.0) self.ldr_min = (ldr(r), ldr(g), ldr(b), ldr(a)) def add_maximums(self, r, g, b, a): self.raw_max = (r, g, b, a) def ldr(x): cmax = 65535.0 return int((r / cmax) * 255.0) self.ldr_max = (ldr(r), ldr(g), ldr(b), ldr(a)) def add_pass(self, pas): self.passes.append(pas) def __getitem__(self, i): return self.passes[i] def __delitem__(self, i): del self.passes[i] def __len__(self): return len(self.passes) class Pass: def __init__(self, partitions, partition, planes, target_hit, mode, component): self.partitions = partitions self.partition_index = 0 if partition is None else partition self.planes = planes self.plane2_component = component self.target_hit = target_hit self.search_mode = mode self.candidates = [] def add_candidate(self, candidate): self.candidates.append(candidate) def __getitem__(self, i): return self.candidates[i] def __delitem__(self, i): del self.candidates[i] def __len__(self): return len(self.candidates) class Candidate: def __init__(self, weight_x, weight_y, weight_z, weight_quant): self.weight_x = weight_x self.weight_y = weight_y self.weight_z = weight_z self.weight_quant = weight_quant self.refinement_errors = [] def add_refinement(self, errorval): self.refinement_errors.append(errorval) def get_attrib(data, name, multiple=False, hard_fail=True): results = [] for attrib in data: if len(attrib) == 2 and attrib[0] == name: results.append(attrib[1]) if not results: if hard_fail: print(json.dumps(data, indent=2)) assert False, "Attribute %s not found" % name if multiple: return list() return None if not multiple: if len(results) > 1: print(json.dumps(data, indent=2)) assert False, "Attribute %s found %u times" % (name, len(results)) return results[0] return results def rev_enumerate(seq): return zip(reversed(range(len(seq))), reversed(seq)) def foreach_block(data): for block in data: yield block def foreach_pass(data): for block in data: for pas in block: yield (block, pas) def foreach_candidate(data): for block in data: for pas in block: # Special case - None candidates for 0 partition if not len(pas): yield (block, pas, None) for candidate in pas: yield (block, pas, candidate) def get_node(data, name, multiple=False, hard_fail=True): results = [] for attrib in data: if len(attrib) == 3 and attrib[0] == "node" and attrib[1] == name: results.append(attrib[2]) if not results: if hard_fail: print(json.dumps(data, indent=2)) assert False, "Node %s not found" % name return None if not multiple: if len(results) > 1: print(json.dumps(data, indent=2)) assert False, "Node %s found %u times" % (name, len(results)) return results[0] return results def find_best_pass_and_candidate(block): explicit_pass = None best_error = 1e30 best_pass = None best_candidate = None for pas in block: # Special case for constant color blocks - no trial candidates if pas.target_hit and pas.partitions == 0: return (pas, None) for candidate in pas: errorval = candidate.refinement_errors[-1] if errorval <= best_error: best_error = errorval best_pass = pas best_candidate = candidate # Every other return type must have both best pass and best candidate assert (best_pass and best_candidate) return (best_pass, best_candidate) def generate_database(data): # Skip header assert(data[0] == "node") assert(data[1] == "root") data = data[2] bx = get_attrib(data, "block_x") by = get_attrib(data, "block_y") bz = get_attrib(data, "block_z") dbStruct = Trace(bx, by, bz) for block in get_node(data, "block", True): px = get_attrib(block, "pos_x") py = get_attrib(block, "pos_y") pz = get_attrib(block, "pos_z") minr = get_attrib(block, "min_r") ming = get_attrib(block, "min_g") minb = get_attrib(block, "min_b") mina = get_attrib(block, "min_a") maxr = get_attrib(block, "max_r") maxg = get_attrib(block, "max_g") maxb = get_attrib(block, "max_b") maxa = get_attrib(block, "max_a") et = get_attrib(block, "tune_error_threshold") blockStruct = Block(px, py, pz, et) blockStruct.add_minimums(minr, ming, minb, mina) blockStruct.add_maximums(maxr, maxg, maxb, maxa) dbStruct.add_block(blockStruct) for pas in get_node(block, "pass", True): # Don't copy across passes we skipped due to heuristics skipped = get_attrib(pas, "skip", False, False) if skipped: continue prts = get_attrib(pas, "partition_count") prti = get_attrib(pas, "partition_index", False, False) plns = get_attrib(pas, "plane_count") chan = get_attrib(pas, "plane_component", False, plns > 2) mode = get_attrib(pas, "search_mode", False, False) ehit = get_attrib(pas, "exit", False, False) == "quality hit" passStruct = Pass(prts, prti, plns, ehit, mode, chan) blockStruct.add_pass(passStruct) # Constant color blocks don't have any candidates if prts == 0: continue for candidate in get_node(pas, "candidate", True): # Don't copy across candidates we couldn't encode failed = get_attrib(candidate, "failed", False, False) if failed: continue wx = get_attrib(candidate, "weight_x") wy = get_attrib(candidate, "weight_y") wz = get_attrib(candidate, "weight_z") wq = QUANT_TABLE[get_attrib(candidate, "weight_quant")] epre = get_attrib(candidate, "error_prerealign", True, False) epst = get_attrib(candidate, "error_postrealign", True, False) candStruct = Candidate(wx, wy, wz, wq) passStruct.add_candidate(candStruct) for value in epre: candStruct.add_refinement(value) for value in epst: candStruct.add_refinement(value) return dbStruct def filter_database(data): for block in data: best_pass, best_candidate = find_best_pass_and_candidate(block) for i, pas in rev_enumerate(block): if pas != best_pass: del block[i] continue if best_candidate is None: continue for j, candidate in rev_enumerate(pas): if candidate != best_candidate: del pas[j] def generate_pass_statistics(data): pass def generate_feature_statistics(data): # ------------------------------------------------------------------------- # Config print("Compressor Config") print("=================") if data.block_z > 1: dat = (data.block_x, data.block_y, data.block_z) print(" - Block size: %ux%ux%u" % dat) else: dat = (data.block_x, data.block_y) print(" - Block size: %ux%u" % dat) print("") # ------------------------------------------------------------------------- # Block metrics result = ddict(int) RANGE_QUANT = 16 for block in foreach_block(data): ranges = [] for i in range(0, 4): ranges.append(block.ldr_max[i] - block.ldr_min[i]) max_range = max(ranges) max_range = int(max_range / RANGE_QUANT) * RANGE_QUANT result[max_range] += 1 print("Channel Range") print("=============") keys = sorted(result.keys()) for key in keys: dat = (key, key + RANGE_QUANT - 1, result[key]) print(" - %3u-%3u dynamic range = %6u blocks" % dat) print("") # ------------------------------------------------------------------------- # Partition usage result_totals = ddict(int) results = ddict(lambda: ddict(int)) for _, pas in foreach_pass(data): result_totals[pas.partitions] += 1 results[pas.partitions][pas.partition_index] += 1 print("Partition Count") print("===============") keys = sorted(result_totals.keys()) for key in keys: dat = (key, result_totals[key], len(results[key])) print(" - %u partition(s) = %6u blocks / %4u indicies" % dat) print("") # ------------------------------------------------------------------------- # Plane usage result_count = ddict(lambda: ddict(int)) result_channel = ddict(lambda: ddict(int)) for _, pas in foreach_pass(data): result_count[pas.partitions][pas.planes] += 1 if (pas.planes > 1): result_channel[pas.partitions][pas.plane2_component] += 1 print("Plane Usage") print("===========") keys = sorted(result_count.keys()) for key in keys: keys2 = sorted(result_count[key]) for key2 in keys2: val2 = result_count[key][key2] dat = (key, key2, val2) print(" - %u partition(s) %u plane(s) = %6u blocks" % dat) if key2 == 2: keys3 = sorted(result_channel[key]) for key3 in keys3: dat = (CHANNEL_TABLE[key3], result_channel[key][key3]) print(" - %s plane = %6u blocks" % dat) print("") # ------------------------------------------------------------------------- # Decimation usage decim_count = ddict(lambda: ddict(int)) quant_count = ddict(lambda: ddict(lambda: ddict(int))) MERGE_ROTATIONS = True for _, pas, can in foreach_candidate(data): # Skip constant color blocks if can is None: continue wx = can.weight_x wy = can.weight_y if MERGE_ROTATIONS and wx < wy: wx, wy = wy, wx decim_count[wx][wy] += 1 quant_count[wx][wy][can.weight_quant] += 1 print("Decimation Usage") print("================") if MERGE_ROTATIONS: print(" - Note: data merging grid rotations") x_keys = sorted(decim_count.keys()) for x_key in x_keys: y_keys = sorted(decim_count[x_key]) for y_key in y_keys: count = decim_count[x_key][y_key] dat = (x_key, y_key, count) print(" - %ux%u weights = %6u blocks" % dat) q_keys = sorted(quant_count[x_key][y_key]) for q_key in q_keys: count = quant_count[x_key][y_key][q_key] dat = (q_key, count) print(" - %2u quant range = %6u blocks" % dat) print("") # ------------------------------------------------------------------------- # Refinement usage total_count = 0 better_count = 0 could_have_count = 0 success_count = 0 refinement_step = [] for block, pas, candidate in foreach_candidate(data): # Ignore zero partition blocks - they don't use refinement if not candidate: continue target_error = block.error_target start_error = candidate.refinement_errors[0] end_error = candidate.refinement_errors[-1] rpf = float(start_error - end_error) / float(len(candidate.refinement_errors)) rpf = abs(rpf) refinement_step.append(rpf / start_error) total_count += 1 if end_error <= start_error: better_count += 1 if end_error <= target_error: success_count += 1 else: for refinement in candidate.refinement_errors: if refinement <= target_error: could_have_count += 1 break print("Refinement Usage") print("================") print(" - %u refinements(s)" % total_count) print(" - %u refinements(s) improved" % better_count) print(" - %u refinements(s) worsened" % (total_count - better_count)) print(" - %u refinements(s) could hit target, but didn't" % could_have_count) print(" - %u refinements(s) hit target" % success_count) print(" - %f mean step improvement" % np.mean(refinement_step)) def parse_command_line(): """ Parse the command line. Returns: Namespace: The parsed command line container. """ parser = argparse.ArgumentParser() parser.add_argument("trace", type=argparse.FileType("r"), help="The trace file to analyze") return parser.parse_args() def main(): """ The main function. Returns: int: The process return code. """ args = parse_command_line() data = json.load(args.trace) db = generate_database(data) filter_database(db) generate_feature_statistics(db) return 0 if __name__ == "__main__": sys.exit(main())